
6.857: Computer and Network Security (Spring 2009)

Guest lecturer: Eran Tromer

Lecture 6: Side-channel attacks February 23, 2009

Traditional attacks

• Bad speci�cations

• Insecure algorithm

• Implementation bugs

• Hardware intrusion

• Software intrusion

Inadvertent information �ows

• Side channels

• Covert channels

� Violate Mandatory Access Controls

� Avoiding detection: steganography

• Violation of standard �platform stack� abstraction

� Across machines

� Across processes

� Across chroot �jails�

� Across virtual machines (e.g., patent 6922774)

Channels

• Electromagnetic (TEMPEST) [Kuhn 2003]

� CRT monitors and LCD monitors [Kuhn 2004]

� CPUs, smartcards

� Keyboard [Vuagnoux Pasini 2008, http://lasecwww.epfl.ch/keyboard]

1



• Power

� Smartcards

� RFID (via EM backscatter) [Oren Shamir 2006,
http://www.wisdom.weizmann.ac.il/~yossio/rfid]

• Timing [Kocher 1996]

� Branches

∗ Modular exponentiation via square-and-multiply
cd mod n = {x← 1; for i=1023,...,0: {x← x2 mod n; if di = 1:x← x · c mod n }}

∗ Long-integer multiplication: plain vs. Karatsuba

� CPU ops whose timing depends on operands (e.g., shifts, multiplications, division)

� S-box access cache collisions (see below)

� Protocol-level (SSL)

� Incoming input (e.g., ssh keystrokes) [Song Wagner Tian 2001]

� Local (same machine) or remote (over a network)

• Di�use visible light from CRT screens [Kuhn 2002]

• Acoustic

� CPUs [Shamir Tromer 2004, http://people.csail.mit.edu/tromer/acoustic]

� Keyboards [Asonov Agrawal 2004]

� Printers

• Cache

� Shared resource across local processes. �Protected memory� is for data; this attacks
metadata (addresses).

� Observation methods:

∗ Power trace [Page 2002]

∗ Covert channels [Hu 1991]

∗ Collision (timing) [Lauradoux 2005][Bonneau Mironov 2006]

∗ Eviction as input (timing) [Bernstein 06][Shamir Tromer Osvik 2006]

∗ Eviction as output (prime+probe) [Shamir Tromer Osvik 2006][Percival 2006]

• Other microarchitectural channels

� Instruction cache / trace cache [Aciicmez 2007]

� Branch prediction [Aciicmez Schindler Koc 2006]

� Functional units (e.g., �oating-point multiplier) [Aciicmez Seifert 2007]

• Faults survey: [Bar-El Choukri Nacacche Runstall Whelan 2004]

2



� Triggers: EM, power, clock skew, neutrons, camera �ash , luck [Skorobogatov Anderson
2002]

� RSA via Chinese Remainder Theorem

� Di�erential Fault Analysis of arbitrary ciphers [Biham Shamir 1996]

� Single memory error su�ces to break out of Java VM [Govindavajhala Appel 2003]

• Multi-spectral / multi-modal (e.g., power+timing)

Analysis

• Simple (power) analysis

� Observe a single trace (e.g., current low vs. high→ bit is 0 or 1)

• Di�erential (power) analysis [Kocher Ja�e Jun 1999]

� Focus on one key-dependent value

� Build a model of the device given known input and (partial) key

� To test a key hypothesis: compare model to measurements for many di�erent inputs,
to average away noise

� �High-order� variant: compare multiple points in time/space

• Template attack

• Stochastic model

Countermeasures

• Goals

� Preserves functionality

� Secure

� E�cient

� Generic

• Degrading the channel (Faraday cages, opaque partitions, sound mu�ers, power �lters...)

• Degrading the signal by injecting noise (randomizing delays, timing, power, memory ac-
cesses..)

• Eliminating the signal by making it deterministic or random (more generally: key-independent)

� Eliminate branches

3



∗ Exponentiation:
cd mod n={x← 0; for i=1023,...,0: {x← x2 · (dc + (1− d)) mod n)} (33% worse).

∗ Elliptic curve formulas

� Cache access normalization

� Bitslicing

• Program obfuscation

� Virtual black box: any circuit C is transformed into C ′ such that anything you can
e�ciently compute by looking at C ′ could also be e�ciently computed given just black-
box access to C.

� Extremely powerful [Hofheinz Malone-Lee Stam 2006]

∗ Private key encryption −→ public key encryption

∗ MACs −→ electronic signatures

� Known obfuscators: just a few extremely simple cases (e.g., point functions) [Canetti
1997]

� Generic obfuscation is impossible [Barak Goldreich Impagliazzo Rudich Sahai Vadhan Yang
2001]

� Heuristic

∗ �Jumble� code by stripping identi�ers, moving code/data around, randomly choos-
ing equivalent sequence, etc.

∗ Typically broken manually or by �decompiler� tools

� The following was not covered in class �

• Oblivious RAM � a compiler such that adversary can't distinguish real execution from that
of a fake CPU which run an idle loop for the same duration and magically outputs the same.
[Goldreich Ostrovsky 1995]

• Encoding for leakage reduction and error detection

� Leakage-resistant logic and fault-resistant logic styles (e.g., balanced)

� Masking

• Cryptographic transformations and models

� Security against bounded-#wired measurements [Ishai Sahai Wagner 2003]

� Side-channel-aware reductions [Micali Reyzin 03]

� �Algorithmic Tamper-Proof �: part tamper-proof , part secret [Gennaro Lysyanskaya
Malkin Micali Rabin 04]

� Stream cipher assuming half-readable memory [Dziembowski Pietrzak 2008]

For a survey of many of these topics, see Chapter 17 in Ross Anderson, Security Engineering, 2nd
ed., Wiley, 2008.

4


