
Stronger Hash Functions
Through Block Shuffling

Elizabeth Reid
Chris Wilkens

Christina Wright

May 14, 2008

Abstract

In this paper we present a new block chaining approach for itera-
tive hash functions based on deterministic block shuffling. We prove
that our new scheme does not weaken collision resistance and that it
is provably secure against message extension attacks under very spe-
cific circumstances. Along the way, we prove that no hash function
with a finite state size can be provably secure against message exten-
sion attacks if it only reads the input once. Finally, we implement
our chaining approach and compare its performance to existing hash
functions.

1 Introduction

Hash functions are currently a hot topic of research. Because they are widely
used in many contexts [10], it is important to have hash functions that are
secure. Yet, current implementations of hash functions are imperfect and
subject to attack [13]. While some attacks are very specific to the particular
hash algorithm [12], work has also been done to scrutinize commonly used
hash constructs [7].

Particularly, the Merkle-Damg̊ard structure [8][11] is frequently used since
it provably preserves collision resistance of the underlying compression func-
tion. Unfortunately, it has been found to have other flaws [4], such as failure

1

to preserve random oracle and psuedorandom properties [1]. It has also been
found to be vulnerable to multicollision attacks. This is problematic be-
cause others have shown that useful collisions can be obtained from abstract
collisions [9].

An attack on the Merkle-Damg̊ard structure is the Herding attack of
Kelsey and Kohno [2]. In this attack they append a string s to a prefix
p in order to force the message to a desired hash h. To be secure against
this type of attack, it must be difficult to compute s given p and h where
hash(p||s) = h.

Another type of multicollision attack Merkle-Damg̊ard structure is sub-
ject to is the message extension attack. That is, when messages A and B
collide then the messages A||C and B||C collide for any C. It was shown
that reordering the message blocks [5] does not solve this problem. More
strongly, no reordering and repeating of the message blocks will improve the
multicollision resistance of the Merkle-Damg̊ard hash [3].

Daum and Lucks give a clear demonstration of how dangerous this attack
can be by generating two PostScript files with the same MD5 hash[6]. The
two documents look perfect, partly because the MD5 collision is embedded
in a constant defined at the top of the file. The subsequent code, which is the
same for both files, checks the value of the constant and prints one message
or the other.

Solutions to the message extension attack have been found. Such as
making the input messages prefix-free. One simple solution is double hashing:
take h(h(m)||m). This approach requires reading the message twice, but
is provably secure against an extension attack. Thus, we will examine a
potential solution to the Merkle-Damg̊ard extension vulnerability which is
constrained to read in the message only once.

In this paper, we will explore hash functions. Our primary contribution
is to analyze a new block chaining approach based on deterministic block
shuffling. In section 2, we describe the details of our algorithm. In section 3
we prove some basic properties of our construction, and in section 4 we give
a few proofs of security. Finally, we discuss why our algorithm, hMIX , is not
immediately vulnerable to existing Merkle-Damg̊ard attacks in section 5 and
implement our scheme in section 6.

Along the way, we present the interesting result that any hash function
with finite state cannot be provably secure against message extension attacks
if it only reads the message once. We do this in section 4.

2

2 The Algorithm

Let h1 and h2 be two standard, Merkle-Damg̊ard hash functions with initial-
ization vectors k1 and k2 respectively and an output size of |h| bits and a
block size of β. Let N = 2n be a parameter of our mixer chosen such that
N ∗ n = |h|. Next, let M = m1||m2|| . . . ||mb be a message divided into b
blocks of length β − n. Finally, let k3 be another key that we will use later.
We wish to hash M as hMIX(M).

If b 6= a · N for some a (i.e. b is not a multiple of N ,) then pad it with
1000 . . . followed by the message length to make h a multiple of N (this is
the same as a standard Merkle-Damg̊ard strengthening [8][11].) When we
refer to M hereafter it is this padded message.

Our design will consist of three stages: a feeder buffer, a mixing array,
and an output hash function. These stages are defined as follows:

1. Feeder. The feeder is FIFO queue that holds N message-sized (i.e.
β−n-bit) blocks. Each step, one block is removed from the queue and
sent to the mixer while the next block of the message is put in the
queue.

2. Mixer. The mixer holds N hash-sized (i.e. β-bit) blocks. Each step, a
block selected from a “random-looking” function (say, index e) and is
removed from the mixer and sent to the hash. Then, e is appended to
the head block of the feeder the resulting value is put into the mixer
at location e. The ordering of the blocks inside the mixer is said to be
the blocks listed in order of their location in the mixer.

3. Hash. This stage uses h2 to produce the final output hash. It uses a
standard Merkle-Damg̊ard chaining structure and chains blocks in the
order that they are received from the mixer. The order that blocks
enter hash stage will be known as the hash ordering.

We will use the mixer to shuffle the blocks of M . The resulting chaining
algorithm may be described as follows:

1. Pad M if necessary.

2. Fill the mixer with empty blocks (i.e blocks with the value e||0 where
e is again the index of the mixer location of the block.)

3

Figure 1: The algorithm at step i. A block is removed from the feeder and
sent to the hash. The location is filled with the next block in the feeder.

3. Load the first N blocks of M (i.e. m1, . . .mN) into the feeder.

4. Pick a random integer e on the range [1, 2, . . . N].

5. Send the block stored at location e in the mixer to the hash stage.

6. Take the next block m from the feeder and put e||m it in location e in
the mixer.

7. Repeat steps 4-6 until the feeder is empty.

8. Send all N blocks in the mixer to the hash, preserving their ordering
from the mixer.

The loop in step 7 will run exactly once for each block in M and then
terminate. Thus, it runs b times. This gives us a framework for defining
steps in the system. Let ei be the value of e chosen when block i is moved
from the feeder to the mixer. Let FEEDERi = Wi = {w1

i , . . . w
N
i } be the

blocks in the feeder when block i is at the head of the feeder. (Note that
each wi is β − n bits long, so FEEDERi is N · (β − n) bits.)

Likewise, let MIXERi = Xi = {x1
i , . . . x

N
i } be the blocks of the mixer

at the same time. In the mixer, each block is a value of e concatenated with
a message block, which we will denote as µ. (Note that the mu represent
a permutation of the message blocks of M as they leave the mixer. We

4

introduce mu because there is no concise way to represent which block of the
message is actually in the mixer at the time of ejection.) This gives xji = j||µji
For consistency, MIXERb+1 is the state of the mixer once all blocks have
left the feeder.

Finally, let γi be the block sent to the hash stage in step i. It follows that
the hash ordering is Γ = γ1 . . . γb+N .

As an exercise, we observe that the algorithm above to compute hMIX(M)
may be completely defined as follows: Initialization:

xj1 = ej||0

wj1 = mj

Recursion:

γi =

{
xei
i i ≤ b

xji i = b+ j and 1 ≤ j ≤ N

xei
i+1 =

{
ei||w1

i = ei||µji j = ei

xji otherwise

wji+1 =

0 i+ j > b

mi+N j = N

wj+1
i otherwise

=

{
mi+j i+ j ≤ b

0 otherwise

Output:

hMIX(M) = h2(Γ)

= h2(γ1|| . . . γb||γb+1|| . . . γb+N)

= h2(x
e1
1 ||xe22 || . . . x

ei
i || . . . x

eb
b ||MIXERb+1)

= h2(e1||µe11 ||e2||µe22 || . . . ei||µ
ei
i || . . . eb||µ

eb
b ||1||µ

1
b+1|| . . . N ||µNb+1)

Given the above algorithm, we must specify a way to deterministically
select “random-looking” e values. We will generate them using another hash
function, h1.

Specifically, we will compute N values of e at a time as the hash of an
N -block chunk of the message. We get the mathematical form:

EcN = ecN+1||ecN+2 . . . ||e(c+1)N = k3 ⊕ h1(FEEDERcN+1).

5

(The rationale for this choice is to prevent the adversary from being able
to specify a single value of e by changing one block input. Originally, we
computed each e value based on the instantaneous contents of the feeder
and mixer. Unfortunately, in this scheme the adversary could independently
tweak blocks to achieve the desired block order.)

3 Preliminary Results

In this section, we prove the following statements about our structure:
Lemma 1: No distinct messages M1 and M2 have the same Γ (i.e. M1 6=

M2 ⇒ Γ1 6= Γ2.)
Lemma 2: Let M yield hash ordering Γ. If M ′ = M ||A where A =

a1|| . . . Aba , then h1(A1|| . . . AN) = k3 ⊕ (1||2|| . . . N).
Lemma 3: Exactly 1

Nb ≤ 1
NN of the proper length Γ sequences are possible

for a message of b blocks.
To prove these, we first demonstrate that if we know the entire hash

ordering Γ, then we can recover M . First, for each γi = ei||µei
i , we know two

things about the values at location ei in the mixer:

1. The block at location ei was µei
i prior to step i. In fact, it held this

value since the last step t that et = ei.

2. The block at location ei will be mi until location ei is written again,
i.e. the next time t that et = ei, unless i > b, in which case we have
already read the entire message and are just flushing the mixer. In the
latter case, the value at location ei is not well defined.

As a result, if we know two steps t1 and t2 that correspond to “consecutive”
ejections from location e, then we know mt1 = µet2 . The µ value may be read
from Γ, so we actually know mt1 . This immediately demonstrates that for
all i where ei is not the last occurrence of a particular value of e, we know
mi.

Next, since we flush the mixer at the end by reading blocks in order, we
know that the last occurrence for any given e is for some i > b. Consequently,
we may conclude that for all i ≤ b, we know mi. Thus, we know M .

Proof of Lemma 1: Based on the previous discussion, given Γ we can
deterministically recover M . It follows that no two messages M may gen-
erate the same Γ, and therefore any distinct input messages have distinct Γ
sequences.

6

Proof of Lemma 2: Given a hash ordering Γ that corresponds to some
message M , if Γ is a subsequence of Γ′ for some M ′ (say, for steps t1 trough
t2,) then we know m′t1 . . .m

′
t2−N = M . It follows that if Γ′ = Γ||B, then

M ′ = M ||A for some blocks A.
Now, we know that the last N blocks of Γ were flushed from the mixer

in order. It follows that they have e values 1, 2, . . . N . Moreover, when we
append A, those e values will be computed as k3 ⊕ h1(a1|| . . . aN). Since
the e values must remain the same, it follows that k3 ⊕ h1(a1|| . . . aN) =
(1||2|| . . . N).

Proof of Lemma 3: For a given block length b, there are 2b·(β−n) possible
input messages and 2b·β possible Γ sequences. Since each message corresponds
to exactly one Γ sequence, it follows that the fraction of Γ sequences that
correspond to valid messages is 1

2b·n = 1
Nb .

Note that since we pad the message, b ≥ N and therefore 1
Nb ≤ 1

NN .

4 Provable Security

Now, we consider the provable security characteristics of this scheme. We
have a few preliminary results for collision finding and message expansion
attacks, but believe that more may be possible.

4.1 Message Extension Attacks

Now, we wish to consider the security of our scheme against message exten-
sion attacks. We cannot prove a general statement of security (in fact, we
disprove it,) but we can give some limited proofs.

We will use the fact that if messages M1 and M2 that collide in hMIX ,
they must have hash orderings Γ1 and Γ2 that collide in h2. Assume that
an adversary is successful in completing a message extension attack, namely,
appending blocks A to both M1 and M2 while maintaining the collision. One
of the following must have occurred:

1. The adversary turned Γ1 and Γ2 into Γ′1 = Γ1||A and Γ′2 = Γ2||A.

2. The adversary turned Γ1 and Γ2 into Γ′1 and Γ′2 of a different form that
still form a collision in h2.

Lemma: Extending the message by the first method is as hard as inverting
h1.

7

Proof: We consider an easier problem: pure appending. To purely append
A to M , the resulting Γ must be of the form Γ||B. We may reduce inverting
h1 (i.e finding x such that h1(x) = y for some specified y) to pure appending
as follows:

1. Take k3 = (1||2 . . . N)⊕ y.

2. Pick an arbitrary message M and purely append blocks A to M .

3. By lemma 2, h1(a1|| . . . aN) = k3 ⊕ (1||2|| . . . N) = y.

4. take x = a1|| . . . aN .

Thus, by reduction, pure appending is as hard as inverting h1. Note also
that x will always have the same length. It follows that this is as hard as the
potentially harder problem of finding an x of length N · (β − n) such that
h1(x) = y.

Now, the second case is much harder. First, we conjecture that if the
adversary has no control over M1 and M2, then extension is still hard.

Conjecture: If the adversary has no control over M1 and M2, then the
second case is hard.

Rationale: First, we assume that Γ1 and Γ2 share no intermediary values
in h2. Observe that no reordering will happen before the last N blocks of Γ.
Consequently, h2 will have at most N−1 new intermediary values. If the two
messages had no common intermediary (or final) values initially, then it is
unlikely that they will have any after shuffling. Consequently, the probability
of causing a permutation of the message blocks that still produces a collision
is low.

Another reason why this is plausible is that many attacks on the Merkle-
Damg̊ard structure require that the adversary select the target hash value
(e.g. the herding attack [2].) In this case, we don’t allow the adversary to
do this, therefore it seems likely that it is not easy.

In the general case, we may prove the following much weaker statement
about extension resistance:

Lemma: The second case is as hard as finding Γ′1 and Γ′2 where there is
no A such that Γ′1 = Γ1||A, Γ′2 = Γ2||A, and h2(Γ

′
1) = h2(Γ

′
2).

Proof: This is almost just a restatement of the second case. We know
that Γ′1 and Γ′2 must be a collision in h2, and we can recover Mi from Γi, so
message extension must be as hard as finding such a collision.

8

Unfortunately, this reduction is as strong as we can expect to prove.
Consider a collision in which the last N blocks of Γ1 and Γ2 are identical:
one may conclude that the final states of the mixers are identical. One may
also conclude that the value of the output hash is is not only identical at the
end, but identical before the mixer is flushed. Consequently, any blocks may
be appended to M1 and M2 while maintaining the collision. Therefore, in
this case message extension is easy.

Theorem: Any hash function h that reads the input only once and has a
finite n-bit internal state cannot be provably secure against message exten-
sion attacks. Specifically, for any such function we can construct a pair of
messages for which message extension is easy.

Proof: First, we observe that any deterministic hash function h may
be modeled as a 3-tuple of functions (I(IV,m1), U(S,mi), F (S)) defined as
follows:

1. I : {0, 1}|IV |, {0, 1}|mi| → {0, 1}n takes the initialization vector and the
first message block and outputs some n-bit state.

2. U : {0, 1}n, {0, 1}|mi| → {0, 1}n takes the previous state S and a new
message block and outputs a new state.

3. F : {0, 1}n → {0, 1}m takes the final state after reading the entire input
message and produces an output.

This is possible because h has a finite amount of internal state, therefore it
can save at most n bits of information between block reads. In this frame-
work, the final hash can be written as

h(M) = F (U(U(. . . U(I(IV,m1),m2) . . . ,mb−1),mb)).

Let the final state before F be Sb, i.e.

Sb = U(U(. . . U(I(IV,m1),m2) . . . ,mb−1),mb).

For any such function h, there exists a pair of messages of length n + 1
that collide in Sb by the pigeonhole principle. Call these messages M1 and
M2. Clearly, since F is deterministic, M1 and M2 collide in h. Now we
append A to both messages. Since U is deterministic and both messages will
see the same blocks of A, the two hashes will be the same for the remainder
of the computation. Thus, for any message blocks A, h(M1||A) = h(M2||A).

9

Consequently, any hash function h that reads the message only once and
has a finite state cannot be provably secure against message extension at-
tacks.

4.2 Collision Resistance

While message extension attacks are dangerous, the biggest question sur-
rounding hash functions today is their collision resistance. Ideally, we would
like to demonstrate that our scheme has improved collision resistance over
its constituent components. We are not currently able to do this. However,
we are at least able to prove that our scheme has not become weaker.

Lemma X: Finding collisions in hMIX is at least as hard as finding colli-
sions in h2.

Proof: As shown earlier, if two different messages M1 and M2 collide,
they must have different hash orders. Consequently, in order for the pair to
be a collision in hMIX , Γ1 and Γ2 must be a collision in h2. Consequently, if
we can find a collision in hMIX we can immediately read off a collision in h2.

5 Hypothesized Resistance to other Attacks

There are certainly many approaches from which we may attack hMIX , but
many of the obvious ones don’t immediately work. For example, the multi-
collision and herding attacks of [5][3][2] do not directly apply to structure as
it is defined. In this section we will discuss a few approaches to attacking
hMIX , suggesting why it isn’t immediately vulnerable to existing attacks.

5.1 Attacking h1

One possible attack is to start by finding collisions in h1. However, it isn’t
clear that collisions in h1 have any relevance to collisions in the final out-
put. Since it is impossible to have two messages with the same Γ, they are
unnecessary.

5.2 Attacking h2

Given that finding collisions is (thus far) only provably as finding collisions in
h2, it seems much more plausible that one could attack h2 to find some Γ and

10

then just hope that the resulting Γ actually corresponds to a message. The
obvious flaw with this approach is that it is highly unlikely that a random Γ
actually corresponds to a message. As we showed in lemma 3, the probability
that a randomly selected Γ actually corresponds to a message is 1

Nb where
b is the number of blocks in the input message (alternatively, N fewer than
the number of blocks in Γ.)

For example, one might apply one of the approaches in [5][3][2] to find
multicollisions in h2. This gives us 2k collisions in h2. An adversary might
hope that at least a few of these possible Γs would correspond to valid mes-
sagesM . However, each multicollision is at least k blocks long. Consequently,
the block length b of a message associated with one of Joux’s multicollisions
is at least k−N blocks long. Finally, any valid Γ is at least 2N blocks long, so
k−N ≥ N Therefore in expectation the adversary will have 2k

2(k−N)·n ≤ 1
2(n−2)·k

collisions, which then makes the probability of getting a single collision in
hMIX from a multicollision in h2 is very small. Thus, on the surface, even
using multicollision attacks against h2 doesn’t give an easy advantage.

5.3 Attacking hMIX as a Merkle-Damg̊ard Hash Func-
tion

Our hash function hMIX is not immediately based on a Merkle-Damg̊ard
hash structure. However, if we look closely, it still may be related to one and
attacked as such. Let the compression function be

f(h2(γ1 . . . γcN)||MIXERcN+1,mcN+1|| . . .m(c+1)N)

= h2(γ1 . . . γ(c+1)N)||MIXER(c+1)N+1.

Any messages which collide in a Merkle-Damg̊ard construction using the
above compression function will also collide in hMIX . Consequently, all the
work on Merkle-Damg̊ard hash functions may be applied to this new function
to find collisions hMIX . Even worse, the collisions found by such an attack
are precisely the ones that render hMIX most vulnerable to extension attacks.

Additionally, attacks that require the adversary to select the target value
before hand (such as the herding attack of [2]) can also be applied to this
new hash function because the adversary can easily compute the hMIX value
from the output of f .

11

The increased difficulty of attacking hMIX would come from the large
number of output bits, essentially making the process of finding collisions
much harder.

6 Implementation

To test the practicality of our system, we implemented it in C with a design
based on the theoretical outline above. However, some details were tweaked
in order to decrease the run time of the function.

6.1 Feeder

While the behavior of the Feeder replicates that of a queue, we chose to
implement it as an array, which allows for much faster input and output
of data. The values in the Feeder are loaded into it and moved out of it
in chunks with no data processing required in between, so fread() can be
used to load the data directly into the Feeder array, which is very efficient.
Furthermore, the hash function used to process the values in the Feeder (to
determine the order of movement of the blocks) also requires that the data
be stored in an array. To temporarily move the values into an array and then
back into a queue is unnecessary and inefficient.

Holding all of the values in the Feeder together as an array also allows
them to be cast to a bitmap to speed up the transfer of 27 bits at a time
between the Feeder and the Mixer, which would be impossible to do with
traditional data types. Thus, by forcing all of the data together into an
array, it allows for significantly faster transfer out as well as in.

6.2 Mixer

The Mixer is also represented as an array, although of a longer length than
the Feeder array. This is because the Mixer holds not only the data from the
file being hashed, but also tags each block of data with the e value associated
with its location. Because these e values never change within the array, they
can be inserted at the beginning of the hash and never removed or replaced
afterward.

The Mixer array is an array of ints rather than an array of chars so that
it is easier to do bitwise computations to transfer the proper bits from the

12

Feeder into the Mixer while still retaining the e value tags at the beginning of
each block. The Feeder array is temporarily turned into a bitmap so that the
27 remaining bits required to fill the 32 bit block in the int Mixer array can
be extracted quickly. The first 5 bits from the Mixer array are joined with
the 27 bits from the Feeder and inserted into the 32 bit portion allocated for
each index in the Mixer array.

6.3 Hash

We used the SHA-1 hash implemented in the OpenSSL library for both of
the required uses of a commercial hash function in our code. The first use is
to generate the “random” order in which blocks are moved out of the Mixer
and replaced with new values from the Feeder. This is done with a single call
to the SHA1() function with all of the data stored in the Feeder array given
to it at once. The output of the function is a 160-bit “random” value, which
can be converted to 32 “random” numbers between 0 and 31 by breaking it
into a bitmap of 5-bit numbers that indicate the index values to be moved.

The second use of the SHA-1 hash is to hash the output of the Mixer
to determine the overall result of the function. However, because the Mixer
releases blocks of information rather than all of the values to be hashed at
once, we used OpenSSL’s functions that allowed us to hash the values in
pieces so that we would not have to store the entire file in memory before
hashing it. This involved three functions in OpenSSL’s library: SHA1-Init(),
SHA1-Update() and SHA1-Final(). SHA1-Init() and SHA1-Final() were
used to initialize and finalize the hashing, respectively, and SHA1-Update()
was used to feed the hash the new values whenever they became available.

6.4 Speed Analysis

Our hash function runs slower than the SHA-1 hash function, which we
expected. This is not a surprise because our hash function uses the SHA-1
hash function to go through all of the data, but we also have to move the
values from the Feeder table into the Mixer table, and then re-hash them
again with another use of SHA-1. Furthermore, the SHA1() code found in
OpenSSL has been refined and streamlined through the efforts of multiple
computer scientists who undoubtedly know more C than we do, especially
tricks to streamline specific code. Thus, our code currently runs roughly
twice as slow as the OpenSSL SHA1() function, but could probably be made

13

Figure 2: Real time statistics of hMIX - The double hashing scheme and hMIX

both require roughly twice the time of SHA-1. The extra hashing in hMIX is
balanced by the file access time incurred by the double hashing scheme.

14

Figure 3: User time statistics of hMIX - The double hashing scheme and
hMIX both require roughly twice the time of SHA-1. The extra hashing in
hMIX makes it slightly slower than the double hashing scheme.

15

to run slightly faster through more streamlining efforts. However, it is not
reasonable to assume that our running speeds will approach anything near
that of SHA-1, because we call it.

Theoretically, we hoped that our hash function would have a run time
roughly on par with a function that hashed a file using SHA-1, prepended that
value to the file, and re-hashed it using SHA-1 again for the final output. Our
logic was that if you ignored the time required to move the blocks between
the Feeder and the Mixer arrays, our function hashes all of the values in a
file a little over two times (the extra is added by the e value tags added in
the Mixer array). We created a basic script that exhibited this behavior and
ran it against the SHA-1 script and our hash function on the same files. This
“double hash” function ran roughly as fast as our own, with some variation
between specific executions (see figures 2 and 3.)

7 Conclusion

In this paper, we presented and analyzed a new approach to block chain-
ing in a hash function based on block shuffling. Intuitively, shuffling the
input blocks makes it harder for the adversary to exploit useful, known block
patterns. For example, simply concatenating two messages may cause ar-
bitrary permutations of their blocks, ideally destroying any nice properties
(e.g. collisions) of those messages.

We demonstrated that our scheme is at least as collision resistant as its
constituent parts and that it is more secure against message extension at-
tacks. Possibly unfortunately, we also show that no finite-state hash function
can be provably secure against message extension attacks if it only reads the
input once.

Finally, we implemented our scheme and demonstrated that it is practical.
As one would expect based on the number of operations, it roughly doubles
the time to hash a message as compared to its constituent hash functions.
This is significant; however, it is not an unreasonable penalty.

We hoped to demonstrate that our scheme is significantly more secure
than existing schemes. We failed to do this; however, we did succeed in
proving that it is at least as strong and arguing that it is stronger, as it
is not immediately vulnerable to existing attacks against Merkle-Damg̊ard
style hash functions.

16

References

[1] Mihir Bellare and Thomas Ristenpart. Multi-property-preserving hash
domain extension: The emd transform, August 4, 2006.

[2] Magnus Daum and Stefan Lucks. Hash collisions (the poisoned message
attack).

[3] Jonathan J. Hoch and Adi Shamir. Breaking the ice - finding multicol-
lisions in iterated concatenated and expanded (ice) hash functions. In
Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in
Computer Science, pages 179–194. Springer, 2006.

[4] Cecile Malinaud3 Jean-Sebastien Coron, Yevgeniy Dodis and Prashant
Puniya. A new design criteria for hash-functions.

[5] Antoine Joux. Multicollisions in iterated hash functions. application to
cascaded constructions. In CRYPTO, pages 306–316, 2004.

[6] John Kelsey and Tadayoshi Kohno. Herding hash functions and the
nostradamus attack.

[7] Werner Schindler Max Gebhardt, Georg Illies. A note on the practical
value of single hash collisions for special file formats, 2005.

[8] Ralph C. Merkle. One way hash functions and des. In CRYPTO ’89:
Proceedings on Advances in cryptology, pages 428–446, New York, NY,
USA, 1989. Springer-Verlag New York, Inc.

[9] O. Mikle. Practical attacks on digital signatures using md5
message digest. Cryptology ePrint Archive, Report 2004/356,
http://eprint.iacr.org/2004/356.

[10] Bart Preneel. Analysis and design of cryptographic hash functions. PhD
Thesis. Katholieke Universiteit Leuven, January, 1993.

[11] Ivan Bjerre Damg̊ard. A design principle for hash functions. In CRYPTO
’89: Proceedings on Advances in cryptology, pages 416–427, New York,
NY, USA, 1989. Springer-Verlag New York, Inc.

[12] Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash
functions. In EUROCRYPT, pages 19–35, 2005.

17

[13] Andrew C Yao Xiaoyun Wang and Frances Yao. Cryptanalysis on sha-1
hash function. Keynote Speech at CRYPTOGRAPHIC HASH WORK-
SHOP, 2005.

18

