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David Karger

Apr. 1, 2021 — Problem Set 7, Due 4/7

Problem 1. Basic Sampling Tricks

(a) Amplification for sampling. Suppose you have an estimation algorithm that will
find a (1± ε) approximation to the correct value with probability 3/4. Show that
you can reduce the failure probability exponentially fast from 1/4 to any desired
δ by performing some number k of estimation experiments and taking the median
value returned. Give the smallest upper bound you can on k as a function of δ.
This shows the log(1/δ) term in µε,δ is natural.

(b) Why do we use the median rather than the average of the repeated samples in
the previous part?

(c) Error bound for sampling. Suppose you can generate independent samples of
a random variable whose standard deviation is less than its mean. Give an
(ε, δ)-FPRAS for estimating the mean of this distribution (to within 1 ± ε with
probability 1−δ) with a number of samples polynomial in 1/ε and log 1/δ. Hint:
Consider the sum of n independent samples from the distribution and determine
its mean and variance. Bound the probability that this sum deviates greatly
from its mean. Now use the previous parts. This shows the 1/ε2 term in µε,δ is
natural.

(d) An unbiased estimator for a quantity µ is a random variable X whose expectation
is µ. If X has variance σ2, the relative variance for X is defined as σ2/µ2. Show
that if X has relative variance r then taking O(rε−2 ln 1/δ) samples of X will
yield an (ε, δ)-approximation for µ.

Problem 2. Suppose you are given a directed graph with n vertices and m unit-length
edges. Consider the problem of estimating the number of vertices within distance d of
each vertex. Give a fully polynomial (ε, δ) approximation scheme that solves this problem
simultaneously for all vertices for any fixed constant d. Your running time should be O((m+
n)/ε2 log 1/δ)) to within polylogarithmic factors.

Problem 3. Consider a stream of N elements x1, x2, · · · , xN from the universe [m]. For
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any such stream, define h ∈ Zm≥0 as the histogram of samples seen, that is, hi is the number
of times i occurred in the stream. In class, we learnt how to estimate the number of distinct
elements seen in a stream of N elements from [m], also represented as ||h||0. The goal of this
problem is to estimate the second moment of the histogram ||h||22 :=

∑m
i=1 h

2
i (also known as

the “repeat rate”).

(a) Show that for any vector h ∈ Zm≥0, and for a random vector x ∈ {+1,−1}m, the

quantity 〈h, x〉2 has expected value ||h||22 and standard deviation of O(||h||22).
(b) Assuming that we have access to arbitrary amounts of randomness, show how

we can estimate ||h||22 upto multiplicative (1± ε) error with probability at least
1− δ, using space Oε,δ(logN) = O(ε−2 log(1/δ) logN) if the space for storing the
randomness is not counted.

(c) Show how you can get rid of the unrealisitic assumption of unbounded ran-
domness by using O(1)-wise independent randomness, therby truly using only
Oε,δ(logN + logm) space.

Problem 4—This problem should be done without collaboration. In class we talked
about how to count the number of satisfying assignments to a DNF, which is equivalent to
estimating the probability of a satisfying assignment if variables get unbiased random assign-
ments. Suppose that instead each variable gets set to true with uniform probability p < 1/2.
Show how to estimate the probability of getting a satisfying assignment.

Problem 5. Based on MR 11.2. In class we gave an FPRAS for DNF counting that evalu-
ated the entire formula about m times, where m is the number of clauses. Here we develop a
faster algorithm. Consider the following variant of the DNF counting algorithm from class.
For the t-th trial, pick a satisfying assignment a uniformly at random from the disjoint union
of satisfying assignments, just as described in class. But now, instead of checking whether
a is the “first” copy of itself, try the following. Let N be the number of assignments in the
disjoint union. Let ca be the number of clauses that a satisfies. Define Xt = 1/ca.

(a) Prove that N ·E[Xt] is the number of satisfying assignments to the DNF formula

(b) Prove that O(mµεδ) trials (and computation of the resulting
∑
Xt) suffice to

DNF-count to within multiplicative error (1±ε) with probability 1−δ. Hint: use
a Chernoff bound generalization that is not limited to binary random variables.

(c) Once a has been chosen in the previous subproblem, give an algorithm for quickly
estimating ca to within (1± ε). Argue that this is sufficient to give us the (1± ε)
approximation for DNF-counting.

(d) Using the new scheme from the previous subproblem, analyze the expected num-
ber of clauses you need to evaluate in the course of the algorithm. Assuming all
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clauses are the same size, what is the actual running time of the scheme in terms
of basic operations?

(e) Optional: Justify the assumption that all clauses are the same size to within a
logarithmic factor, thus extending the runtime analysis to arbitrary formulae.

Problem 6—Optional. Many simulations requiring sampling from the exponential distri-
bution (Pr (X > t) = e−t). The easiest method is to generate a random variable uniformly
distributed in [0, 1] and take its logarithm, but this requires expensive math. Von Neumann
developed a strange and clever trick for generating such samples:

• Set k = 0

• Generate a sequence of random variables u0, . . . , un so long as they decrease, i.e. until
un+1 > un.

• If n is even then output x = u1 +k. Otherwise increment k and go back to the previous
step.

Analyze this algorithm.

(a) Prove that its outputs are exponentially distributed. Hint: start by determining
the distribution of n.

(b) Bound the expected number of (uniform) random samples needed to output one
exponential sample.
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