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Problem Set 5 Solutions

Problem 1. Let T and P be the text and pattern matrices respectively. For each (i, j), let

Wi,j =
∑

0≤i′,j′<m

2i
′+j′×mTi+i′,j+j′ .

In words, Wi,j is the number we get by flattening out the m×m window (whose upper left
corner is at i, j) and interpreting the resulting binary string as a binary number.

Let P =
∑

0≤i′,j′<m 2i
′+j′×mP1+i′,1+j′ . Notice that Wi,j − P has at most m2 prime factors for

a fixed i, j, which implies that

Pr (Wi,j − P = 0 (mod p)|Wi,j 6= P ) ≤ m2

π(τ)
= O

(
1

t

)
,

where p is a random prime smaller than τ = tm2 log(tm2) and π(τ) = O(τ/ log(τ)) denotes
the number of primes smaller than τ . Since there are total of O(n2) fingerprints, the overall

failure probability is O
(
n2

t

)
by the union bound. Thus by choosing t = n4, it follows that

by picking a random prime p in the range of τ , p does not divide any Wi,j − P with high
probability.

Now we simply have to check if Wi,j − P = 0 (mod p). To get the required runtime O(n2),
we present an efficient way to obtain the next fingerprint from the previous one.
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Notice that

Wi+1,j =
∑

0≤i′,j′<m

2i
′+j′×mTi+1+i′,j+j′

=
∑

0≤j′<m

2m−1+j
′×mTm+i,j+j′

+
∑

0≤i′,j′<m−1

2i
′+j′×mTi+1+i′,j+j′

=
∑

0≤j′<m

2m−1+j
′×mTm+i,j+j′

+
1

2

∑
0≤j′<m−1,1≤i′<m

2i
′+j′×mTi+i′,j+j′

=
∑

0≤j′<m

2m−1+j
′×mTm+i,j+j′

+
1

2
Wi,j

−1

2

∑
0≤j′<m

2j
′×mTi,j+j′ .

Let Ri,j =
∑

0≤j′<m 2j
′×mTi,j+j′ . This is the horizontal “slice” located at i, j.

We have

Wi+1,j =
1

2

(
Wi,j + 2mRm+i,j −R′i,j

)
.

In words, this means we can compute the value of the new window, which is slided down by
one vertical unit, by subtracting one horizontal slice and adding one horizontal slice.

Notice that Ri,j can be easily precomputed as follows (using the familiar trick in 1D):

Ri,j+1 =
∑

0≤j′<m

2j
′×mTi,j+1+j′

=
1

2m

(
Ri,j − Ti,j + 2m

2

Ti,m+j

)
.

Runtime analysis:

1. Find Ri,0 for all i. [It takes O(nm)]

2. Use Ri,j+1 = 1
2m

(
Ri,j − Ti,j + 2m

2
Ti,m+j

)
and Ri,0 to find Ri,j. [O(n2)]

3. Use the formula Wi,j =
∑

0≤i′<m 2i
′
Ri+i′,j to find W0,j for all j. [O(nm)]

4. Use Wi+1,j = 1
2

(
Wi,j + 2mRm+i,j −R′i,j

)
to find Wi,j. [O(n2)]

5. Compute P . [O(m2)]
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Problem 2. (a) The expected number of bits where the two Bloom filters differ is n
times the probability that a fixed bit differs; call this pb. If one of the r common
elements gets mapped to the bit through one of the k hash functions, this bit will
obviously be the same. The probability that this happens is pc = 1− (1− 1

n
)rk.

Now condition on none of the r common elements setting the bit. The probability
that one of the m − r elements unique to the first set makes this bit one is
pd = 1 − (1 − 1

n
)(m−r)k. The second set also have m − r unique elements, so it

has an independent probability of pd that one of these elements sets the bit (the
probabilities are independent because the elements are unique to each set). The
probability that exactly one of the sets make the bit one is 2pd(1 − pd). This
is all conditioned on none of the common elements setting the bit, so overall
pb = (1 − pc)2pd(1 − pd) = (1 − 1

n
)rk2 · (1 − 1

n
)(m−r)k(1 − (1 − 1

n
)(m−r)k) =

2(1− 1
n
)mk(1− (1− 1

n
)(m−r)k) ≈ 2e−mk/n(1− e(m−r)k/n).

(b) If B is the number of indices on which the Bloom filters differ, then part (a),
shows that,

E[B] = 2n

(
1− 1

n

)mk(
1−

(
1− 1

n

)(m−r)k
)
≈ 2ne−km/n(1− e−(m−r)k/n)

Assuming B is concentrated around it’s expectation, we can estimate r as,

m+
n

k
log

(
1− B

2ne−mk/n

)

Problem 3. (a) We hash m elements to a n
r

space with a universal hash function.
Fix some x not in the set. The expected number of elements with which it collides
is m times the probability that it collides with a fixed element of the set. By
universality (even weak universality suffices), this is r

n
, so we expect x to collide

with mr
n

elements. Let B denote x’s bit. By Markov, the probability that B is
set is at most mr

n
, since

Pr (B ≥ 1) ≤ E[B]

1
= E[B] =

mr

n
.

We are using r hash functions, chosen at random. The probability computed
above is for fixed elements, over the choice of the hash function. So, since the
hash functions are independent, these probabilities are independent, and x is a
false positive with probability at most (mr

n
)r.

(b) We are trying to minimize (mr
n

)r as a function of r. Since x→ lnx is increasing
for x > 0, this is equivalent to minimizing ln · · · = r(ln r + ln m

n
). Taking the

derivative with respect to r, and setting this to zero, we get ln r+ln m
n

+r(1
r
) = 0,

or ln r = −1 − ln m
n

= ln n
em

. So the best choice is r = n
em

(it can be seen that
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we actually found a minimum because for very small and very large r we have
high probabilities). So the optimal probability of false positives is e−n/em ≈
(.6922)n/m.

There was a paper in SODA’05 showing how to get optimal error, (.5)−n/m (where
m is the space in bits), even with universal hashing.

Problem 4. We associate with each tree a polynomial, defined recursively as follows. For
leaves, the polynomial is x0. If the tree has height h ≥ 1, the polynomial is (xh−Pv1) . . . (xh−
Pvk), where v1, . . . , vk are the children of the root, and Pvi is the polynomial associated with
the subtree rooted at vi. We now argue that the polynomials associated with two trees are
symbolically equal iff the trees are isomorphic. This is shown by induction on the height of
the tree. It is obvious for h = 0 (leaves are always isomorphic, and x0 = x0). Now consider
two trees of height h. If the trees are isomorphic, there is a bijection between the children
of the roots, such that the subtrees are isomorphic. The two polynomials are products of
terms corresponding to the subtrees; if the subtrees are isomorphic by some association, they
will have equal polynomials, so the product will also be the same (it is commutative, so the
association between the subtrees is irrelevant). Also, we use xh for both trees, because if
they are isomorphic, they must have the same height.

Now assume the polynomials are symbolically equal. For this, it must be the case that the
trees have the same height, because the polynomials must have the same maximum i such
that xi appears in the polynomial. Now, the maximum degree of xh is the number of children;
thus, the two roots must have the same number of children k. Because both polynomials
come from trees of height h, with roots having k children, they can be written as (xh −
Pv1) . . . (xh−Pvk) = (xh−Pu1) . . . (xh−Puk). The polynomials can be viewed as polynomials
in one indeterminate xh, with coefficients coming from the ring K = F[x1, . . . , xh−1]. Then,
Pvi are the roots of the first polynomial, and Pui are the roots of the second polynomial.
Since K[xh] is a unique factorization domain, the roots of two equal polynomials must be
equal. So there is some association between {vi} and {ui} which makes the polynomials
Pui and Pvj symbolically equal. These polynomials characterize trees of heigh h − 1 so by
induction, the tress are isomorphic. But if we can group the subtrees in isomorphic pairs,
the big trees are also isomorphic, qed.

Now all we have to do is test that the two polynomials are symbolically equal. Note that they
have degree at most n by a simple inductive argument. We also need to bound the maximum
absolute value of the coefficients. We will instead bound the sum of absolute values of the
coefficients by 2n−1. The base case is simple since n = 1 and the sum of absolute values of
coefficients is 1. If we use n(v) to denote the number of vertices in the subtree rooted by v,
then by induction, the sum of absolute values of coefficients of Pv can be bounded by

(1 + 2n(v1)−1)(1 + 2n(v2)−1) · · · (1 + 2n(vk)−1),

which is at most
(2n(v1))(2n(v2)) · · · (2n(vk)) = 2n(v)−1.
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Thus, maximum absolute value of any coefficient is 2n−1 and the maximum absolute value
of any coefficient of the difference between two polynomials is at most 2n. Thus, if two
trees are not isomorphic, the difference between their corresponding polynomials will have
a nonzero coefficient whose absolute value is at most 2n, which contains at most n distinct
prime factors. Thus, if we pick p randomly from the first n2 primes, two non-isomorphic trees
will have different polynomials even over the field F = Fp with probability at least 1− 1/n.
We can sample such prime p by repeatedly sampling integers of value O(n2 lg n), and use a
randomized primality test to check if the sampled integer is a prime. By the Schwartz-Zippel
lemma, plugging in random values from F for the variables will yield the same evaluation
with probability ≤ 1

n
. This can be amplified to whp by trying O(1) times. Evaluating the

polynomial at these random points can be done in O(n). All values fit in O(lg n) bits, and
we can evaluate the polynomial in linear time by recursing on the tree, by the definition of
the polynomial.

Problem 5. (a) Let the vector m = [m1, · · · ,mk] denote the vector of the message
sent to the entry vertices. As the value at each vertex is a linear combination of
the values mi, for each vertex v ∈ V , we assign a row vector a(v) ∈ Rk which
shows the coefficients of this linear combination. That is, A(v) = a(v) ·mT is the
sum of the messages arrived at each node. Note that using this notation, for an
edge e = (u, v), the value u sends to v, is equal to (w(e)A(u)). Now it is enough
to prove that each a(v)i is equal to the sum of all the weights of the paths from
si to v, because rows of M are a(t1), · · · , a(tk). For simplicity we assume that
the weight of a zero length path from a node to itself is equal to 1.

We prove the argument by induction. Since the graph is a DAG, we can consider
the topological order of the nodes in which all the edges go forward. The base
case, suppose v is the first vertex in this order. Since v has no incoming edge, it
receives no message and hence a(v) = ~0 and clearly there is no path from any si
to v in this case and thus the argument holds.

For the induction step, there are two cases. First we consider the case where
v 6= sl for any value of l. Suppose the set of incoming edges to v is e1, · · · , et
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having their other vertex at u1, · · · , ut, then the value v receives is equal to

A(v) =
t∑

j=1

w(ej)A(uj)

=
t∑

j=1

k∑
i=1

w(ej)a(uj)imi

=
k∑
i=1

mi

t∑
j=1

w(ej)a(uj)i

=
k∑
i=1

mia(v)i = ~a(v)~mT

Since the argument holds for all vertices uj, it is true that a(uj)i shows the sum
of the weights of the paths from si to uj. Therefore, w(ej)a(uj)i shows the sum
of the weights of the paths from si to v which use the edge ej and thus a(v)i is
equal to the sum of all the weights of the paths from si to v and the argument
holds for v.

The other case is when v = sl. This case is similar to the previous one except
that since none of the uj could have received a message from sl, we have a(uj)l =
0. However sl is receiving the message ml from the source and thus the total
coefficient of ml in A(v) is equal to 1, i.e. a(v)l = 1 which by our assumption is
equal to the weight of the path from sl to sl.

(b) The determinant formula is det(M) =
∑

π(−1)sgn(π)
∏k

i=1Mi,π(i) where π takes
value over all permutations of [k]. From part (a), Mi,π(i) =

∑
p∈Pi

w(p) where Pi
is the set of paths from si to tπ(i) and w(p) shows the weight of a path. Therefore
we have

k∏
i=1

Mi,π(i) =
k∏
i=1

∑
p∈Pi

w(p) =
∑

p1∈P1,··· ,pk∈Pk

k∏
i=1

w(pi)

where the inner term
∏k

i=1w(pi) by definition is exactly the weight of a path
system. Also since different permutation have disjoint set of path systems, the
determinant is a signed sum of the weights of path systems.

(c) Any value k flow from s to t is a set of k vertex (and thus edge) disjoint paths
from si to tπ(i) for some permutation π over [k]. Suppose E ′ = {e1, · · · , et} is the
set of all edges in these paths. It can be seen that given a set of feasible edges E ′

for a path system, there is only one path system which uses exactly edges of E ′

(because they are vertex disjoint, by following the edges going out from the entry
vertices we can find the paths and they never collide and never there are more
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than one option). So there are no two terms corresponding to E ′ in the sum to
cancel out each other and each feasible E ′ contributes (+or−)

∏
e∈E′ w(e) to the

sum.

Note: We can also prove a stronger version of this result, namely, that non-vertex
disjoint path systems always cancel each other out in det(M). In particular,
consider some path system S = {p1, . . . , pk} that is not vertex disjoint and let i
be the smallest index such that pi intersects with some other path in the path
system. Let j be the smallest index of paths that intersect with pi and let v
denote some vertex, where pi and pj intersect. Now we construct a path p′i as
follows: Follow pi until we hit v, then follow pj. Similarly, we can also construct
p′j, and from there a path system S ′, where we replace pi and pj by p′i and p′j,
respectively. Moreover, note that both S and S ′ appear in det(M) for different
permutations π, π′. In particular, S ′ was constructed from S by swapping two
paths, i.e., swapping the destination nodes tπ(i), tπ(j) for the two nodes si, sj. In
other words, tπ(i) = tπ′(j) and vice versa. This implies that the permutation π′

associated with S ′ must have opposite parity of the permutation of π associated
with S, thus the sign of S is opposite of the sign of S ′. Finally, we note that
w(S) = w(S ′), where w(S) denotes the weight of the path system S, and conclude
that since w(S) and w(S ′) have different signs in det(M), they cancel each other.
Since the above argument holds for any non-vertex disjoint path system, only
vertex disjoint path systems remain.

(d) From parts (b) and (c), it can be seen that the determinant is a polynomial of
degree at most |E|, therefore by Schwartz-Zippel Lemma, the probability that a

random assignment of weights in Zp is a root is at most |E|
p

and thus it is enough

to choose p ≥ |E|2 to reduce the probability to 1
|E| .

(e) From part (d), with high probability det(M) 6= 0 and thus M is invertible. So
having A(t1), · · ·A(tk), we can compute m1, · · · ,mk.


