6.856 — Randomized Algorithms

Spring Term, 2021
Mar. 3, 2021 — Problem Set 3, Due 3/10

Problem 1. Consider a collection of n random variables X; drawn independently from the
geometric distribution with mean 2 — that is, X; is the number of flips of an unbiased coin
up to and including the first occurrence of heads. Let X = >~ X;. Use two different methods
to derive bounds on the probability that X > (1 4 €)(2n) for any fixed € > 0:

(a) Figure out how to reduce this to a question involving just the sum of independent
Bernoulli (i.e. indicator) variables, allowing you to apply the Chernoff bound we
already know.

(b) Use the method of the in-class Chernoff bound analysis to derive ab initio an up-
per bound for deviation of sums of independent, identically distributed geometric
random variables. In other words, mimicking the analysis from class, derive a
Chernoft-like bound for sums of geometric random variables.

Problem 2—This problem should be done without collaboration. MR 4.14. Show
that the Quicksort algorithm of Chapter 1 runs in O(nlogn) time with high probability. Do
so by bounding the number of pivots to which each element is compared. Hint: for a given
item x, call a pivoting round good if x ends up in the smaller subproblem. How many good
rounds can x be in? How long will that take to happen? You may use the previous problem.

Problem 3. Some problems with bit-fixing:

(a) Based on MR Exercise 4.2. Consider the transpose permutation: writing i as
the concatenation of two n/2-bit strings a; and b;, we want to route a;b; to b;a;.
Show the bit fixing strategy takes Q2(+v/N) steps on this permutation.

(b) MR 4.9. Consider the following randomized variant of the bit fixing algorithm.
Each packet randomly orders the bit positions in the label of its source and then
corrects the mismatched bits in that order. Show that there is a permutation
for which with high probability that algorithm uses 2™ steps to route. An
inequality that might be helpful:
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Problem 4—This problem should be done without collaboration. In class we showed
that n balls in n random bins see a maximum load of O(logn/loglogn). Show this bound
is tight:

(a) Show there is a k = Q(logn/loglogn) such that bin 1 has at least k balls with
probability at least 1/4/n. You may want to use the inequality:

1) = ()= (5

(b) Argue that conditioning on the first bin not having k balls only increases the
probability that the second bin does, and so on. Conclude that with high prob-
ability, some bin has 2(logn/loglogn) balls.

Problem 5—Optional. MR 4.7. Prove that Chernoff bounds hold for arbitrary random
variables in the [0, 1] interval:

(a) A function f is said to be converif for any z,y, and 0 < A < 1, f(Ax+(1—N)y) <
Af(z) 4+ (1= XN)f(y). Show that f(x) = e is convex for any ¢ > 0 (you can use
the fact that €' has positive second derivative everywhere). What if ¢ < 07

(b) Let Z be a random variable that takes values in the interval [0, 1] and let p =
E[Z]. Define the Bernoulli random variable X such that Pr([) X = 1] = p. Show
that for any convex f, E[f(Z)] < E[f(X)].

(c) Let Yi,...,Y, be independent identical distributed random variables over [0, 1]
and define Y = > Y;. Derive Chernoff-type upper and lower tail bounds for the
random variable Y. In particular, show that for 6 <1,

Pr()Y — E[Y] > §] < exp(—02/2n).

Problem 6—Optional. Variant of MR 4.22. Chernoff bounds are quite powerful, but are
limited to sums of independent random variables. In the next problem, we will consider
ways to apply them to sums of dependent random variables by comparing the dependent
distributions to independent ones.

Consider the model of n balls tossed randomly in n bins. We derive tight bounds on the
number of empty bins. Let X; be the indicator variable that is 1 if the ¢-th bin is empty.
Let Z =" I; be the number of empty bins. Define p = F[X;] = (1 —1/n)" and let X/ be n
mutually independent Bernoulli random variables that are 1 with probability p. Note that
Y = > X/ has the binomial distribution with parameters n and p.

(a) Show that for all t > 0, Ele'?] < E[e!Y] (hint: think about comparing E[Y*]
and E[Z*] by expanding them). Conclude that any Chernoff bound on the upper
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tail of Y’s distribution also applies to the upper tail of Z’s distribution, even
though the Bernoulli variables X; are not independent. (The point is that their
correlation is negative and only helps to reduce the tail probability.) Give a
resulting bound on the upper tail of Z.

(b) (This one is very hard) Perform the same sort of analysis for the lower tail.



