
Massachusetts Institute of Technology
6.856J/18.416J: Randomized Algorithms March 12, 2021
David Karger

Problem Set 2 Solutions

Problem 1. (a) As in the class, we can construct an adversarial input as follows.
When replying to algorithm’s queries on leaves, we always reply such that for any
tree, if not all leaves were queried, then the value of the tree is not yet determined.
In this case, for each internal node, the algorithm is forced to evaluate each of
its children.

For a node x, call val(x) the value of x.

We do this as follows. Suppose the algorithm queries leaf x, and let n1, n2, . . . , nh−1, nh =
x be the path from root (n1) to x in the tree. Let ni be the lowest node such
that there exists a non-examined leaf in ni’s subtree (x being counted as “ex-
amined”). Then, if ni has 0 children with established value (ni+1 begin con-
sidered with non-established value), then we choose val(x) = 0 (in which case,
val(ni+1) = val(ni+2) = · · · = valnh = 0). If ni has 1 child with established value
(ni+1 begin considered with non-established value), then we choose val(x) = 1
(in which case, val(ni+1) = val(ni+2) = · · · = val(nh) = 1). Note that the value
of the first child of ni is 0, and therefore the value of ni remains un-established.
Also, note that by the definition of ni, ni cannot have 2 children with established
value (ni+1 being considered with non-established value).

Thus, for each node, the algorithm has to establish the value of all of its 3 children
– which means that the algorithm has to query all 3h leaves.

(b) Consider a node x in the tree. Let its value be val(x). This means that there
are two children child1(x) and child2(x) such that val(x) = val(child1(x)) =
val(child2(x)). If, for each x, we know that these children child1(x) and child2(x),
then we can only compute the values of these children to compute the value of
x. Thus, a non-deterministic algorithm can just guess child1(x) and child2(x)
and reccurse on those 2. If val(child1(x)) = val(child2(x)) then we know for sure
that val(x) = val(child1(x)) = val(child2(x)). If val(child1(x)) 6= val(child2(x))
then we fail on that branch. At least one of the branches of the non-deterministic
algorithm will succeed and give the right answer.

The number of leaves queried (in each branch) is given by the reccurence formula:
T (h) = 2T (h− 1) (where T (0) = 1) and it solves to 2h, which is 2log3 n = nlog3 2.

(c) Consider a node x at level t. x has at least two children that agree on their values
(e.g., child1(x) and child2(x)). If the third child has a different value, then: there
is a probability of 1/3 that the randomized algorithm will compute the value of
only child1(x) and child2(x); and probability of 2/3 that the algorithm with
compute the value of all three children. If the third child has the same value

2 Problem Set 2 Solutions

with the other 2 children, then the algorithm will compute the value of only 2 of
its children.

Thus, if we call T (t) the number of leaves queried for a node at height t, then:
either E[T (t)] = 1/3 · 2E[T (t − 1)] + 2/3 · 3E[T (t − 1)] = 8/3 · E[T (t − 1)] (in
the first case) or E[T (t)] = 2E[T (t − 1)] (in the second case). Thus, E[T (t)] ≤
8
3
E[T (t− 1)]. With T (0) = 1, this solves to E[T (t)] = (8

3
)t.

Concluding, we have that E[T (h)] ≤ (8
3
)log3 n = nlog3 8/3 ≤ n.8928.

Problem 2. The lower bound is of course Ω(n log n).

By Yao’s minimax principle, it is enough to exhibit a distribution over inputs and prove that
any deterministic algorithm will have, in expectation, a runtime of Ω(n log n).

Coming up with the distribution is the “hardest” part: let’s take uniform distribution over
inputs. Note that, in the comparison model, an input is a permutation of the ranks of the
elements (consider all elements are different). Thus, we have in total n! different inputs(and
outputs), each drawn with probability 1/n!.

Now consider any deterministic sorting algorithm. As in CLR, we can view the algorithm
as a binary tree where in each node the algorithm makes a comparison; and, based on the
result, branches to left or to right. Clearly, if there are n! different answers (equivalently
inputs), then there should be n! leaves in the decision tree.

Now we want to compute the expected runtime of this algorithm on uniform distribution
over all inputs. In other words, this is exactly the average height of the leaves of the decision
tree.1 Let hi be the depth of the leaf corresponing to input i (for i = 1 . . . n!). Then,
the expected running time is µ = E[hi] (where the expectance is over i’s). We want to
lower-bound the value µ.

By Markov, we have that Pri(hi ≥ 2µ) ≤ 1/2. This means that for at least n!/2 of i’s
(leaves), the depth is hi ≤ 2µ. Since all these leaves are leaves in the decision tree, which is a
binary tree, we can conclude that there is a binary tree of depth ≤ 2µ that contains at least
n!/2 leaves. However, we know that a binary tree on n!/2 leaves must be of at least depth
Ω(log(n!/2)) = Ω(n log n). Therefore 2µ ≥ Ω(n log n), which implies that µ = Ω(n log n).
Our initial claim is proven.

Problem 3. (a) Consider a subsequence of coin flips of length log2 n + c. Such a
subsequence has probability of exactly (1

2
)log2 n+c = n−12−c that all the coins flips

in the considered subsequence are heads. There are in total n − log2 n − c + 1
such subsequences in the sequence of length n, and, therefore, by union bound,
there is a probability of ≤ (n − log2 n − c + 1) · n−12−c ≤ n · n−12−c = 2−c that
there exists a subseqence of length log2 n+ c of heads.

1There are numerous ways to show this, including a greedy exchange argument, using the convexity of
log, etc. Above analysis is just one example.

Problem Set 2 Solutions 3

(b) Let l = log2 n − a log2 log2 n − c, where a, c are constants. Divide the entire se-
quence into n/l subsequences of length l. One such subsequence has a probability
2−l of having all coins heads. Therefore, the probability P that none of the n/l
subsequences is all heads is P ≤ (1 − 2−l)n/l. Let’s compute this probability:

P ≤ (1 − 2−l)n/l = (1 − 2c loga
2 n

n
)n/l ≤ (1 − 2c loga

2 n

n
)n/ log2 n ≤ exp[−2c loga

2 n

log2 n
] ≤

exp[−2c log2 n] = n−2c log2 e for a = 2. Since we can choose the constant c as big
as we want, we achieve that whp (1 − n−Ω(1)), there will exist a subsequence of
heads of length l.

Problem 4. Recall that we are choosing s = n3/4 random samples and taking as “bound-
aries” the samples a and b indexed at s/2−

√
n and s/2+

√
n respectively in the sample. We

want to count the number of items between a and b. We will instead bound the number of
items less than a and, equivalently, the number greater than b, then subtract those quantities
to find the number in between.

Without loss of generality we can assume that the n input items are 1, . . . , n. We first show
that a is likely to be at least n

2
− 2n

3
4 . For this to not be the case, with our s independent

trials, we would have to draw at least s
2
−
√
n = n

3
4

2
−
√
n values less than n

2
− 2n

3
4 .

Let X be the number of items we have drawn which are less than n
2
− 2n

3
4 . The expected

value of X is sp = n
3
4 (1

2
− 2n− 1

4) = n
3
4

2
− 2
√
n. The variance of X is sp(1− p) ≤ n

3
4

4
, giving

a standard deviation of ≤ n
3
8

2
. Applying Chebyshev’s inequality,

Pr

(∣∣∣∣∣X − n
3
4

2
+ 2
√
n

∣∣∣∣∣ ≥ √n
)
≤ Pr

(∣∣∣∣∣X − n
3
4

2
+ 2
√
n

∣∣∣∣∣ ≥ 2n
1
8σX

)
≤ 1

4
n− 1

4 .

This implies that we draw at least s
2
−
√
n = n

3
4

2
−
√
n values less than n

2
− 2n

3
4 (and thus, a

is less than n
2
− 2n

3
4) with probability at most n− 1

4

4
. Through a symmetric analysis, we can

see that b is greater than n
2

+ 2n
3
4 with probability at most n− 1

4

4
. Thus, by the union bound,

there are at most 4n
3
4 items between a and b with probability at least 1−O(n− 1

4).

Problem 5. Let X = X1+X2+···+Xn

n
. Suppose for every i, it holds that Var(Xi) ≤ σ2.

Thus, E[X] = µ and Var(X) = Var(X1)+···+Var(Xn)
n2 ≤ nσ2

n2 = σ2

n
. Thus by the Chebyshev’s

Inequality,

Pr (|X − µ| > ε) ≤ σ2

nε2
,

from which our result follows by taking n→∞.

