\documentclass[12pt]{article} \usepackage{wide,amsmath} $\newcommand{\indx}{{\it index}}$ $\newcommand\xhat{{\hat x}}$ $\newcommand\what{{\hat w}}$ $\newcommand\zhat{{\hat z}}$ $\newcommand\Phat{{\hat P}}$ $\newcommand{\OPT}{\mathrm{OPT}}$ \parindent0pt

Approximation Algorithms

The Probabilistic Method---Value of Random Answers

Idea: to show an object with certain properties exists

Max-Cut

Set balancing

MAX SAT

Sometimes, it's hard to get hands on a good probability distribution of random answers.

Define.

Random assignment

LP: \[\max \sum_{j=1}^{m} z_j \] $$ \begin{align*} &\sum_{i \in C_j^+} y_i + \sum_{i \in C_j^-} (1-y_1) ~\ge~ z_j\\ &y_i ~\in~ [0,1] \qquad \text{(relaxation of $\{0,1\}$)} \end{align*} $$

Randomized Rounding Analysis

LP good for small clauses, random for large.

Set Cover

Definition

LP: \[\min \sum_{i=1}^{n} y_i \] $$ \begin{align*} \text{for all } v \in [m] \qquad \sum_{i : v \in S_i} y_i \ge 1 & \\ \text{for all } i \in [n] \qquad 0 \le y_i \le 1 & \quad \text{(relaxation of $\{0,1\}$)} \end{align*} $$

Candidate Randomized Rounding:

Actual Rounding:

Expected set size:

Wiring

Problem formulation

Linear Programs, integer linear programs

IP formulation LP: \[ \min w \] $$ \begin{align*} \text{for every } i : \quad & x_{i0}+x_{i1} ~=~ 1\\ \text{for every edge } b : \quad &\sum_{i \in T_{b0}} x_{i0} + \sum_{i \in T_{b1}} x_{i1} \le w \end{align*} $$ Rounding Generalize