
Dynamic Graph Algorithms Using Dynamic

Forest Techniques

Lawrence Wu
llwu@mit.edu

December 10, 2014

Abstract

A dynamic graph problem is a problem of maintaining a graph subject
to edge insertions and/or deletions, and queries about some property of
the graph. An incremental dynamic graph algorithm supports just edge
insertions, a decremental dynamic graph algorithm supports just edge
deletions, and a fully dynamic graph algorithm supports both edge inser-
tions and deletions. In this paper, we survey some of the currently best
results in dynamic graph algorithms, first describing the dynamic forest
data structures used, then describing the high-level techniques used and
presenting an amortized analysis. Then, we discuss some open conjectures
about whether the results described in this paper could be generalized.

1 Introduction

In section 2, we briefly describe the Euler tour trees (abbreviated ET-trees) of
Henzinger and King (1995) [3] and the top trees of Alstrup et al (1997) [1],
which will be used in later sections. In section 3, we present algorithms for the
fully dynamic connectivity and decrementally dynamic minimum spanning tree
problems (and also briefly describe algorithms for the fully dynamic minimum
spanning tree and fully dynamic 2-connectivity problems) with polylogarithmic
amortized performance due to Holm et al (2001) [5]. Finally, Section 4 concludes
with a discussion of open problems in the area.

2 Dynamic Forest Representations

The following data structures are presented mainly as black boxes, with some
intuition given about implementation. For more detailed treatments of the
subject, we refer the reader to [3] for Euler tour trees and [1] for top trees.

1

2.1 Euler tour trees

In the directed representation of a tree where each undirected edge (v, w) of the
tree is represented by the directed edges (v, w) and (w, v), a Euler tour of the
tree is a path on the tree that visits each edge exactly once (so the Euler tour of
a size n tree has length 2n− 2). Here we describe the method of representing a
forest by representing a Euler tour of each tree in the forest as a balanced binary
search tree, with pointers from each vertex in the forest to its first appearance
in the Euler tour. Using this method, the following operations can be supported
in O(log n) time using O(n) space:

• connected(v,w) : returns whether v and w are in the same tree.

• link(v,w) : if v and w are in different trees, inserts an edge with endpoints
v and w connecting the trees.

• cut(v,w) : deletes the edge v and w, splitting the tree that (v, w) was in
into two trees.

• size(v) : returns the number of vertices in the tree containing v.

• min-key(v) : if each vertex is assigned a numerical key, then this returns
the minimal key among the vertices in the tree containing v.

Since linking two trees corresponds to concatenating their Euler tours and cut-
ting a tree corresponds to splitting its Euler tour, link and cut can be imple-
mented using the merge and split operations of the balanced binary tree. Since
two vertices are in the same tree iff they are in the same Euler tour, connected
can be implemented using the findroot operation of the balanced binary search
tree. size and min-key can be implemented by augmenting each node of the
balanced binary trees with the size and min-key of the subtree rooted at that
node, so that our operations simply need to return the augmentation values at
the root.

Finally, Henzinger and King (1999) [4] note that if we use a Θ(log n)-ary B-
tree instead of a balanced binary tree, we can, at the cost of link and cut taking
O(log2 n/ log log n) time, make the other operations run in O(log n/ log log n)
time, since the height of the B-tree is O(log n/ log log n) and the branching
factor is O(log n).

2.2 Top Trees

Node that each Euler tour tree augmentation stores information about a con-
tiguous section of a Euler Tour, so the Euler tour tree representation method
stores aggregate data about subtrees of trees in the forest. The top trees dis-
cussed in this section stores information about paths, which will turn out to
be useful in the dynamic 2-connectivity problem. A top tree T is defined on
an underlying tree T and a set ∂T of at most two vertices of T called external
boundary vertices. The boundary vertices of any connected subtree C of T are

2

defined to be the vertices of C which are either boundary vertices of T or are
connected to a vertex outside of C by an edge. C is a cluster if and only if it
has at most 2 boundary vertices. The top tree is a binary tree representing the
underlying tree’s subdivision into clusters, such that:

• The nodes of T are the clusters of (T, ∂T).

• The leaves of T are the edges of T .

• Sibling nodes of T are clusters intersecting in a single vertex, and their
parent node is the union of the clusters.

• The root of T is T .

For each cluster, we associate a path π(C), which is the path between the
boundary vertices. So at each node C we can store any information about π(C)
as long as it can be maintained in O(1) time under the following O(1) time
core operations (we will see that these are the only operations that we need to
change the tree with):

• Merge(A, B) : Merges the top trees rooted at clusters A and B into a
top tree rooted at the cluster A ∪B, then returns the new root cluster.

• Split(C) : Deletes the root cluster C, turning T into two top trees.

An example of an augmentation that we can maintain is the maximal weight
edge in π(C), since we need to do no maintenance work for Split(C), and for
Merge(A, B) we need only augment the new root cluster with the greater of
the augmentations of A and B.

Alstrup et al (1997) [1] and Frederickson (1985) [2] proved that for a dynamic
forest we can maintain top trees of height O(log n) and total size linear in
the size of the dynamic forest supporting the link, cut, and expose (defined
below) operations in with a sequence of O(log n) Merges and Splits, and that
the sequence itself can be identified in O(log n) time. The expose operation is
defined as follows:

• Expose(v,w) : If v and w are in the same tree, makes v and w external
boundary vertices of the top tree containing them and returns the new
root cluster, else returns nil.

It follows from this theorem that we can find the root cluster containing a
given vertex v, and therefore implement Connected(v, w) in O(log n) time by
maintaining a pointer from each vertex in the dynamic forest to the smallest
cluster that it appears in. [5] It also follows that we can query the maximal
weight edge in the path between two vertices v and w by calling Expose(v,w),
then returning the augmentation value mentioned earlier from the root cluster
containing v and w.

3

3 The Algorithms of Holm et al.

3.1 Fully Dynamic Graph Connectivity

Holm et al’s algorithm maintains a spanning forest F of the graph G. As
mentioned by Kapron, King, and Mountjoy in their paper [6], this method is
used in most dynamic connectivity algorithms, as edge insertions are easy to
handle, while edge deletions become a problem of finding a replacement edge to
reconnect the trees that were split. Holm et al’s algorithm amortizes this work
by assigning a level `(e) ∈ {0, 1, · · · , blog2 nc} to each edge e. Then Gi is defined
to be the subgraph of G containing all edges of level at least i. We maintain the
forests F = F0 ⊇ F1 ⊇ · · · ⊇ Fblog2 nc such such that Fi is a spanning forest of
Gi for each i. This takes O(n log n) space since there are O(log n) and we store
a size O(n) forest for each level. We also maintain the adjacency lists for each
vertex, which takes O(n + m) space since each edge appears in two adjacency
lists. So the space usage of the algorithm is O(m+n log n). The algorithm relies
on maintaining the following invariants:

1. Fi is a maximum spanning forest of Gi for each i, that is, for each edge
(v, w), v and w are connected in F`(v,w)

2. The maximal number of vertices in a tree in Fi is bn/2ic.

The algorithm will never decrease the level of an edge, so that each edge increases
in level at most blog2 nc times, so that we can charge the costs of any operations
which increase the level of an edge to the insertion of that edge. Now the insert,
connected, and delete operations are implemented as follows:

• insert(v,w) : Set `(v, w) = 0. Add v and w to each other’s adjacency
lists (cost O(log n)). Call link(v,w) on F0. Invariant 1 is preserved
by link(v,w), and invariant 2 is preserved since we only changed F0,
which can have up to n vertices. The actual cost of this operation is
O(log2 n/ log log n).

• connected(v,w) : Simply call connected(v,w) on F0. The cost of this
operation is O(log n/ log logn).

• delete(v,w) : If v and w are not connected, simply remove v and w from
each other’s adjancency lists (cost O(log n)). Otherwise, call cut(v,w)
from each level ≤ `(v, w), which has total actual cost O(log3 n/ log log n)
and then search for a replacement edge. To find a replacement edge, we
do, for level i = `(v, w) down to i = 0:

Let Tv be the tree containing v and Tw be the tree containing w. Assume,
without loss of generality, that |Tv| ≤ |Tw|, since we are able to query the
size of a tree using Euler tour tree representation. Then by Invariant 2,
|Tv|+ |Tw| ≤ bn/2ic, so |Tv| ≤ bn/2i+1c, so it would not violate Invariant
2 if the edges of Tv had their levels increased to i+ 1. Thus, the following
procedure does not violate Invariant 2: for each y incident to a vertex

4

x ∈ Tv with `(x, y) = i (we can augment the nodes of our Euler trees with
the incident edges at the level of the tree using O(m) total extra space,
which does not change the O(m+n log n) space bound, so that each y can
be considered in O(log n) time), if y is in Tu, add (x, y) to F0, · · · , Fblog2 nc
(total actual cost O(log3 n/ log log n)) and return, otherwise increase the
level of (x, y) to i + 1, and charge the O(log n) cost for considering the
edge to its insertion.

Note that since we look for replacement edges in decreasing order of level, In-
variant 1 is maintained by delete. Since the level of an edges increases O(log n)
times, we charge a total of O(log2 n) deletion cost to insertion, so insertion
has an amortized cost of O(log2 n) while deletion has an amortized cost of
O(log3 n/ log log n). The paper by Holm et al gives a O(log2 n) time bound,
although at the time of writing we were not able to verify it, since it relies on
O(log n) time links/cuts (see page 732 of Holm et al [5]) which are not guaran-
teed by Θ(log n)-ary B-tree-based Euler trees. As stated before, the cost of a
query is O(log n/ log log n), so all operations run in amortized polylogarithmic
time.

3.2 Decrementally Dynamic Minimum Spanning Tree

In the previous subsection, we already described how to maintain a spanning
forest of G. So to maintain a minimum spanning forest of G, we will see that it
suffices use the same deletion algorithm as above, but considering the potential
replacement edges in each level in increasing order of weight (this takes no extra
time using Euler tour tree augmentation). To show that we maintain a minimum
spanning forest this way, we show that the following invariant is maintained:

1. Every cycle C has a nontree lowest heaviest edge, that is, an edge e with
w(e) = maxf∈C w(f) and `(e) = minf∈C `(f).

Lemma 1. [5] Assume invariant 1 and that F is a minimum spanning forest.
Then, for any tree edge e, among all replacement edges, the lightest edge is on
the maximum level.

Proof. For any two replacement edges e1 and e2 for e with w(e1) < w(e2), let
C1 be the cycle induced by e and e1, C2 be the cycle induced by e and e2, and
C = (C1∪C2)\ (C1∩C2). Then since F is a minimum spanning forest, e1 is the
heaviest edge on C1 and e2 is the heaviest edge on C2, but e2 is heavier than
e1, so e2 is the heaviest edge on C, so by invariant 1, e2 is the lowest edge on
C, so e1 is on a higher level.

Now to show that Invariant 1 is maintained, we show that it is maintained
during the search for a replacement edge, since the deletion of the edge creates
no new cycles. Suppose an edge e gets its level increased or becomes a tree edge.
If e is not a unique nontree lowest heaviest edge on any cycle C, then Invariant
1 cannot be violated. Otherwise, let i be the level of e. By the definition
of our replacement procedure, every edge in Tv and every edge incident to Tv

5

lighter than e has level > i. Since e is lowest on C and it is a unique nontree
lowest heaviest edge on C, any nontree edge in C heavier or equal to e has level
> 1. So all edges in C incident to Tv have level > i. Assume for the sake of
contradiction that C leaves Tv. Then it must have some edge f 6= e leaving Tv,
but if f ≥ i then it would be a replacement edge, and since we are searching
for replacement edges in decreasing order, we know there are no replacement
edges with level > i, so f has level at most i, which contradicts the fact that all
edges in C incident to Tv have level > i. Thus, C does not leave Tv, so e is not
a replacement edge, and since all other edges in C have level > i, Invariant 1 is
maintained when the level of e is increased.

Now, because Invariant 1 is maintained and due to Lemma 1, whenever a
tree edge is deleted, it is replaced by a lightest replacement edge, so the spanning
forest remains minimal. We have the same time bounds as before, with each
initial edge contributing a potential cost of O(log2 n), so that any sequence of
deletions takes O(m log2 n) time.

3.3 Fully Dynamic MSF and Fully Dynamic 2-connectivity

For the fully dynamic minimum spanning forest problem, Holm et al [5] give
an algorithm with O(log4 n) amortized update times based on reducing the
fully dynamic minimum spanning forest problem to a series of decrementally
dynamic minimum spanning forest problems. The idea is to maintain dlog2me
decremental data structures. Then to insert new edges or replacement edges
we need to update this set of decremental data structures. Implementing these
updates involves a careful application of top trees. The full description and
analysis is rather detailed, so refer the interested reader to Holm et al [5].

For the fully dynamic 2-connectivity problem, Holm et al [5] present an
algorithm with O(log4 n) update times based on their method for fully dynamic
connectivity. In this problem, we must consider not only a spanning forest but
also covering edges. A nontree edge (v, w) is a covering edge for a tree edge e
if e is on the cycle induced by (v, w). Maintaining cover information on paths
can be done with top trees; a rigorous treatment of the method is given in [5].

4 Conclusions

We surveyed some dynamic graph algorithms that should have good perfor-
mance in practice; however, there are still questions of theoretical interest. It
remains unknown whether there is an deterministic dynamic graph connectiv-
ity algorithm which has worst-case polylogarithmic runtime for updates and
queries. The algorithm due to Holm et al does not satisfy this since the time
bounds are amortized. There is also a new Monte Carlo algorithm due to
Kapron, King, and Mountjoy [6] which has polylogarithmic worst-case time
bounds but is not deterministic. The best deterministic worst-case result so
far is still O(

√
n) update and O(1) query due to Frederickson (1985) [2]. It

would also constitute interesting work to find polylogarithmic (amortized time)

6

algorithms for k-connectivity when k = O(1) (this problem is currently open
for k > 2). It seems that polylogarithmic algorithms based on the algorithms of
Holm et al should exist since two vertices are k-connected iff they are (k − 1)-
connected with any edge of the graph removed; however, at the time of writing,
we have been unsuccessful in solving this problem.

References

[1] Alstrup, S., Holm, J., de Lichtenburg, K., and Thorup, M. 1997. Minimizing
diameters of dynamic trees. In Proceedings of the 24th International Collo-
quium on Automata Languages and Programming (ICALP). Lecture Notes
in Computer Science, vol. 1256. Springer-Verlag, New York, pp. 270 280.

[2] Frederickson , G. N. 1985. Data structures for on-line updating of mini-
mum spanning trees, with applications. SIAM J. Comput. 14, 4, 781798.
(Announced at STOC, 1983.)

[3] Henzinger, M. R., and King, V. 1995. Randomized dynamic graph algorithms
with polylogarithmic time per operation. In Proceedings of the 27th annual
ACM Symposium on Theory of Computing (STOC). ACM, 519-527.

[4] Henzinger, M. R., and King, V. 1999. Randomized fully dynamic graph
algorithms with polylogarith- mic time per operation. J. ACM 46, 4 (July),
502536. (Announced at STOC, 1995.)

[5] Holm, J., Alstrup, S., de Lichtenburg, K., and Thorup, M. 2001. Poly-
logarithmic deterministic fully-dynamic algorithms for connectivity, min-
imum spanning tree, 2-edge, and biconnectivity. In Journal of the ACM
(JACM), 48 (4). 723-760.

[6] Kapron, B., King, V., and Mountjoy, B. 2013. Dynamic graph connectivity
in polylogarithmic worst case time. In ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 1131-1142.

7

