
Approximate Nearest Neighbors with Las Vegas Guarantees

Anonymous

December 15, 2016

Abstract

Most of the past work on approximate nearest neighbor problem is focused around the
Monte Carlo algorithms that return the correct result only with high probability. This report
(written as a reading project for the MIT’s Advanced Algorithms class) is a survey of the Las
Vegas algorithms for this problem as described in [Pag16]. We perform a detailed analysis on
the efficiency of these algorithms and prove comparable expected time bounds to the classical
methods, namely the seminal LSH construction of Indyk and Motwani [G+99]. We conclude
that these algorithms can avoid the problem of false negatives at little or no cost in efficiency.

1 Introduction

Following problem is of significant importance to several areas of computer science including data
mining and pattern recognition: given a set S of n points in d-dimensional space, construct a data
structure that finds the point in S that is closest to a query point y. This problem is called nearest
neighbor search and it is known that exact solutions to this problem would disprove the strong
exponential time hypothesis. Hence, instead of the exact version we will focus on the approximate
nearest neighbor search.

As we have seen in class, there are many efficient data structures for the nearest neighbor search
in low dimensions, especially in computational geometry. However, these data structures do not
generalize well to the high dimensional cases since their query and preprocessing times increase
exponentially with dimensionality d. Arguably, data structures that come closest to overcoming
the high-dimensionality problem are based on locality-sensitive hashing (LSH).

In the following sections, we first explain the classical LSH methods [G+99] and their perfor-
mance guarantees. Then we consider a novel construction of locality-sensitive hash families that
is guaranteed to have hash collisions for every pair of vectors within a given radius r. Later, we
generalize this construction to different cases to prove comparable expected time bounds for our
algorithms.

2 Background

Hamming Space. In this paper we will work on nearest neighbor search in Hamming space,
where data set and queries consist of binary vectors of the form x, y ∈ {0,1}d, where d is the
dimensionality of the data. Length of a vector in this metric will simply be the number of non-
zero bits: ∣∣x∣∣ = ∣{i ∈ {1, ..., d} ∣ xi = 1}∣, and distance between two vectors is defined as the number
of locations they differ: ∣∣x − y∣∣ = ∣{i ∈ {1, ..., d} ∣ xi ≠ yi}∣. We also define bit-wise conjuction and
disjunction operators which will be taken component-wise: x∧y and x∨y. In time bound analysis,
we will assume that these unary and binary operations can be done in constant time, which is
actually the case if vectors fit machine words.

Definition. A hashing family H is r-covering if for all possible pairs of vectors with distance at
most r there exists a hash in the family that maps these vectors to the same bucket. Formally:

∣∣x − y∣∣ ≤ r⇒ ∃h ∈H ∶ h(x) = h(y)

1



Hash functions we will use throughout the paper are simply bit masking operations. In other
words, given a vector a from the Hamming Space, hashing function corresponding to that vector
will be:

h(x) = x ∧ a

This can also be seen as the projection of vector x on a.

Important remark. For simplicity, we will use h to refer both the hash function and the
projection vector a. Therefore a hashing function h can also be written as:

h(x) = x ∧ h

Problem Statement. We want to perform nearest neighbor search in d-dimensional Hamming
Space. Given:

• S: n d-dimensional vectors from Hamming Space
• r: search radius
• c: approximation factor
• y: d-dimensional queries from Hamming Space

we want to find c-approximate nearest neighbor of query y within radius r.

Definition. c-approximate nearest neighbor search within radius r is defined as follows: Given a
query y, if there exists an x ∈ S with ∣∣x−y∣∣ ≤ r, algorithm must return an x′ ∈ S with ∣∣x′−y∣∣ ≤ cr.

Note that the problem we are tackling is actually a variant of the approximate nearest neighbor
search where search radius r is known before query time. However, the algorithms that we are
going to present can be generalized, i.e. to the case of finding an x′ such that ∣∣x′ − y∣∣ ≤ c∣∣x∗ − y∣∣
where x∗ is the nearest neighbor of query y. This can be done by spanning radii from 1 to d
in O (log(n) log(d)) steps (i.e. ri = ⌈(1 + 1/ log(n))i⌉) and doing binary search to find distance of
nearest neighbor. This adds a logarithmic factor to the query time and decreases the approximation
factor but this can be compensated by adjusting c. In short, solving this version of the problem
gives comparably efficient algorithms for the general case.

3 Classical LSH

In this section, we succinctly describe the classical LSH [G+99] and its performance guarantees.
The main algorithm can be formulated as follows:

• We pick m uniformly random hash functions h(i) with norm k, i.e. we randomly select m
vectors from the set {h ∈ {0,1}d ∶ ∣∣h∣∣ = k}

• In preprocessing time, we construct m hash tables: For each h(i), we construct the corre-
sponding hash table T (i) by computing the h(i)(x) for each x in our set S.

• In query time, given a query y: For each hash function h(i) compute h(i)(y) and retrieve all
points from colliding bucket in T (i) until:

– Either all the collisions have been retrieved.
– Or total number of points that are retrieved exceeds m.

Then we return a point from the retrieved set that is at most cr far from the query, if there
is any.

Clearly, this algorithm answers any query in time O(m). There are two reasons that this algorithm
might not return the correct answer: (i) It uses only a subset of collisions to answer a query (ii)
It uses uniformly random hash functions and in some sense there is always a chance that all of
the hash functions are bad. However, it turns out that by setting m = O(n1/c) and picking an
appropriate k, one can minimize the expected number of bad collisions and guarantee that the
returned result is correct with high probability. Overall query runtime is O(n1/c).

2



Classical LSH algorithm is a Monte Carlo algorithm, since it returns the correct result only
with high probability. Also it picks the sequence of hash functions independently, which inherently
implies that we can only hope for high probability bounds. In the following sections, we will
present a different algorithm and a different construction for the hash family that will allow us
to eliminate the false negatives with little or no efficiency loss. Resulting algorithm will be a Las
Vegas algorithm that always returns the correct answer, but will only have expected time bounds.

4 Algorithm

We will tackle the approximate nearest neighbor search problem by finding a hashing family H
that satisfies the following conditions: First, we want to hash close vectors to the same bucket. In
other words, if distance between two vectors is at most r, there must exist an h ∈ H such that h
maps these two vectors to the same value. Secondly, we want the probability that distant vectors
is mapped to the same bucket to be low. Particularly, for each hash function h in our family and
for any pairs of vectors x and y, we want the probability that h(x) = h(y) to be low when x and
y are distant vectors. One can formulate these two conditions as follows:

• If ∣∣x − y∣∣ ≤ r then there exists an h ∈H for which h(x) = h(y) (r-covering).
• For each h ∈H, Pr [h(x) = h(y)] ≤ 2−∣∣x−y∣∣.

Algorithm. Assuming that we found an H that satisfies these, our algorithm will be as follows:
First, we will create a data structure to store hashes of vectors in our database in pre-computation
time. We will go through all vectors in our database and for each hash function we calculate the
hash and put the vector to corresponding hash bucket. Hash functions will have separate sets of
buckets so that we don’t get collision between different hash functions.

After constructing the data structure, we will process a query by going through each hash
function, apply hash to query to find its corresponding bucket, and calculate the distance between
the query and each vector in that bucket. Algorithm terminates as soon as it finds an approximate
neighbor. Figure 1 gives a simple pseudocode for this algorithm.

function BuildDataStructure(S, r)
D = ∅
for x ∈ S do

for h ∈H(r) do
D[h,h(x)] ∶=D[h,h(x)] ∪ {x}

return D

function NearestNeighbor(D,y, r)
for h ∈H do

for x ∈D[h,h(y)] do
if ∣∣x − y∣∣ ≤ cr then

return x
return null

Figure 1: Pseudocode for constructing (left) and querying (right) our data structure.

Since our hashing family H will be r-covering, if there is an x ∈ S with ∣∣x−y∣∣ ≤ r, x will be mapped
to the same value as y under some h ∈ H. Therefore in that case, our algorithm is guaranteed to
return a vector x′ with ∣∣x′ − y∣∣ ≤ cr, making it a Las Vegas-type algorithm. We will bound the
running time in expectation instead of in worst case, and there are two important values we need
to consider when we analyze the running time:

Size of our hashing family. The algorithm goes through functions in the hash family until it
finds a suitable answer, and we might need to go through all of them if there’s no such answer.
Therefore size of the hashing family introduces a lower bound to running time: O (∣H∣)
Number of bad collisions. These are the collisions of query y with vectors in S that are not
c-approximate nearest neighbors. More precisely, we define:

E [#bad collisions] = E [∣{(x,h) ∈ S ×H ∣ h(x) = h(y) ∧ ∣∣x − y∣∣ > cr}∣]

3



If we consider the case where we have many bad collisions but no approximate neighbor, our
algorithm will need to go through all these collisions without terminating at any step. Therefore
running time is also lower bounded by E [#bad collisions].
Moreover, running time of our algorithm is upper bounded by ∣H∣+E [#bad collisions]. Therefore
to get an efficient algorithm, we need to find a hash family that balance these two values ∣H∣
and E [#bad collisions]. Following sections of this paper will be devoted to finding efficient hash
families for different search distances.

5 A Simple Construction

We need a way to construct the hashing family H so that it satisfies the two conditions of c-
approximate nearest neighbor search we’ve stated above. In order to generate vectors h, we will
use a binary matrix M of size d × (r + 1) where each element is randomly selected from {0,1}.
Given a binary vector v of dimension (r + 1), we will compute the matrix multiplication Mv and
take the modulo 2 of every component, which will give us a binary vector of dimension d. If we
represent this mapping as v → hv, formally:

hv =Mv (mod 2)

where modulo is taken component-wise.

We will apply this procedure to all possible vectors of dimension r + 1, except zero vector, and
create a set of 2r+1 − 1 binary vectors of dimension d. We will call the hashing family constructed
with this procedure H(r). Formally:

H(r) = {hv ∣ v ∈ {0,1}r+1/{0}}

Claim. Given a uniformly randomized binary matrix M , H(r) satisfies the following two condi-
tions.

• If ∣∣x − y∣∣ ≤ r then there exists a h ∈H(r) for which h(x) = h(y).
• For each h ∈H(r), Pr [h(x) = h(y)] ≤ 2−∣∣x−y∣∣.

Proof. We consider each of the conditions separately:

1. To hash x and y to the same bucket, h projection should ignore the bits that x and y differ,
which means: xi ≠ yi ⇒ hi = 0. If ∣∣x − y∣∣ ≤ r, there can be at most r indices that they differ.
Recalling Mv = 0 (mod 2) for some v, we need Miv = 0 (mod 2) at these indices. Therefore we
have a linear system with r + 1 variables and at most r equations, and there exists a non-zero v
that satisfies this system. Since we use all possible v’s in our hashing family construction, our
family satisfies the constraint.

2. In order to get same hash from two different vectors, vector h that we use for hashing should have
value 0 at indices where vectors differ: xi ≠ yi ⇒ hi = 0. Since elements of M are uniformly random
and vector v we use to generate h is non-zero, components of h will be randomly distributed:
Pr [hi = 0] = 1/2. Therefore probability of getting hi = 0 for all the indices where xi ≠ yi will be:

Pr [h(x) = h(y)] = 2−∣∣x−y∣∣

Special Case. We will first consider the special case cr = log(n), where this simple construction
already gives a good running time. Previously we have shown that in order to get a good running
time bound we need to upper bound ∣H∣ +E [#bad collisions].

Consider the following example problem. Suppose we have a set S of n = 230 vectors from
{0,1}128 and wish to search for a vector at distance at most r = 10 from a query vector y, with

4



approximation factor c = 3. Note that cr = 30 = log(n) in this case. Number of hash functions in
our 10-covering family is 211 − 1 = 2047. To compute the expected number of bad collisions i.e.
collisions with distance at least 31, we will consider the second condition: second condition gives
that expected number of bad collisions per hash function is at most 2−31 × n = 1/2. Hence, if we
sum this up for each h ∈ H, total number of bad collisions is at most 1024. Therefore any query
can be answered in ∼ 3000 operations.

Indeed, as there are 2r+1−1 functions in our hash family, time to calculate all hash tables will be
O (2r). Expected number of bad collisions we will find in these hashes can be calculated as follows.
We found that probability of two vectors x and y to collide on a hash h to be Pr [h(x) = h(y)] =
2−∣∣x−y∣∣. So given a query y, if a vector x from our data set is not a c-approximate vector (i.e.
∣∣x − y∣∣ > cr = log(n)) it will collide with y on a hash function with probability less than 2−cr.
Since there are 2r+1 − 1 hash functions in our family and there are n vectors in our data set,
from linearity of expectations expected number of collisions that we need to deal with is at most:
(2r+1 − 1)2−crn = (2r+1 − 1)2− log(n)n = 2r+1 − 1 = O (2r). Hence both calculating hash buckets
and processing collisions in these buckets are time bounded by O (2r), expected query time of our
algorithm is also O (2r) = O (n1/c). Note that this matches to the time bound of the classical
LSH.

6 Generalizing to Large Distances

Above simple construction does not work for large distances. The reason is, when search radius r
is large, our simple construction leads to a large number of hash functions, i.e. ∣H∣ becomes very
large. For instance, in above example, when search radius becomes 100 instead of 10, number
of hash functions in our hash family becomes 2101 − 1 instead of 210 − 1, which is certainly not
feasible for our runtime. To solve this issue, we will construct a new hashing family HL that is
still r-covering, but has a lot less number of hash functions. Since we are reducing the number
of hash functions, the number of bad collisions will increase, but hopefully our construction will
balance these two values out.

Intuition for our construction. We will use the idea of partitioning [AGK06]. Consider
partitioning of indices {1,2, . . . , d} into b equi-sized sets P1, P2, . . . , Pb. For instance, a simple
partitioning would be

{1,2, . . . , u} ∪ {(u + 1), . . . ,2u} ∪ ⋅ ⋅ ⋅ ∪ {(d − u + 1), . . . , d}

where u is equal to ⌊d/b⌋. For any two vectors x and y in d-dimensional Hamming Space with
distance r, consider the set of mismatching indices i.e.

Smismatch = {i ∈ {1,2, . . . , d} ∣ xi ≠ yi}

Since number of mismatching indices is r, from pigeonhole principle, there exists a partition set Pi

with at most ⌊r/b⌋ mismatching indices. Here we aim to come up with an r-covering family with
less number of hash functions, and therefore, a natural idea might be to use our simple hashing
family H(r′) with r′ = ⌊r/b⌋. We can project H(r′) to each of these partitions to get an r-covering
family HL. Here projection of a hash function to a partition is defined as follows: We keep the
bits of hash at indices in partition set, while setting other bits that are not picked by partition to
zero. Formally, on a hash function h ∈ {0,1}d and on a partition set P ,

Projection(h,P ) = h ∧ u

where u is defined as the d-dimensional Hamming vector with ui = 1⇔ i ∈ P .

Moreover, we define projecting hash family H to a partition set P simply as projecting each of
the hash functions h ∈H to P . That is,

Projection(H, P ) = ⋃
h∈H

Projection(h,P )

5



⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P1 ∶ 1,5 P2 ∶ 2,4 P3 ∶ 3,6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 2: A sample projection for d = 6 and b = 3

The idea is to construct a hashing family HL by projecting H(r′) to each of the partitions.
Hopefully, HL will have a lot less number of hash functions, but will still remain r-covering. If we
write this more formally,

HL =
b

⋃
i=1

Projection(H(r′), Pi)

Clearly, number of hash functions inHL is the number of hash functions inH(r′) times the number

of partitions. Therefore ∣HL∣ = b∣H(r′)∣ = b(2r′+1 − 1) = O (b2⌊r/b⌋). Note that if b is large, this

number is a lot less than the size of our original r-covering family which was 2r+1 − 1.
Now we can prove that this hashing family is r-covering, with the intuition that if two vectors

mismatch at r indices, there is a partition that has at most r′ = ⌊r/b⌋ mismatches. Therefore when
we project H(r′) to this partition, there exists a hash function in this projection that maps these
two vectors to the same value.

Claim. For any x, y ∈ {0,1}d with ∣∣x−y∣∣ ≤ r, there exists a hash function h ∈HL with h(x) = h(y).

Proof. Consider the set of mismatching indices Smismatch for x and y as defined above. For each
partition Pi, let si denote the number of mismatching indices in Pi. That is,

si = ∣Smismatch ∩ Pi∣

Clearly, ∑ si = ∣∣x − y∣∣ ≤ r, so from pigeonhole principle there exists a j with sj ≤ ⌊r/b⌋ = r′. Now
consider the corresponding hash family,

HL
j = Projection(H(r′), Pj)

From our previous construction of H(r′), we know that H(r′) is r′-covering, i.e. for any u, v
with ∣∣u − v∣∣ ≤ r′, there exists a hash function h ∈ H(r′) with h(u) = h(v). Observe that the
projection operation does not change any bit from 0 to 1, and thus, any projection of H(r′)
remains r′-covering. Consequently, HL

j is an r′-covering hash family.

For any hash function h inHL
j , all the indices except the ones in the Pj have value 0. Therefore,

to prove that there exists an h ∈HL
j with h(x) = h(y), it is enough to account only for the indices

that are in Pj . Note that the number of mismatching indices in Pj is at most r′. Therefore there
exists a h ∈HL

j with h(x) = h(y) since HL
j is r′-covering,. Result follows.

6



Now, it remains to bound the number of bad collisions under hash family HL to get a good ex-
pected runtime for our algorithm. However, it turns out that in this simplest form HL leads to
a large number of bad collisions even for the vectors that are very distant from each other. That
is mainly because hash functions in HL are very sparse, i.e. average number of nonzero indices
per hash function is very low. To solve this problem, we will refine our idea of partitioning. Our
refinement will aim to increase the average number of nonzero bits per hash function, while main-
taining the r-covering property.

Refinement. In the above construction, each index appears only in a single partition set, and
this leads to low number of indices per set. Since our hashing family was constructed by projecting
H(r′) to each of the partitions, projected hash functions had low number of nonzero indices. A
natural idea to fix this is to put each index into multiple partition sets.

Let q denote the number of partition sets each index appears in. For instance for q = 2, a
possible partitioning would be,

{1,2, . . . ,2u} ∪ {(u + 1), . . . ,3u} ∪ ⋅ ⋅ ⋅ ∪ {(d − u + 1), . . . , d,1, . . . , u}

where u is equal to ⌊d/b⌋. Note that when compared to previous example partition, this one has
2 times more indices per partition set.

We can apply the pigeonhole principle along very similar lines. That is, if we distribute q
copies of r mismatching indices across b partition sets, there will always be a set with at most
r∗ = ⌊rq/b⌋ mismatches. Now to get an r-covering family, we can project H(r∗) to each of the

partitions. Note that this time size of our hashing family, b2r
∗+1, is larger than the previous family

when q > 1.
In order to avoid any adversary input sequence and get a good expected runtime, we need to

randomize our partition. This randomization will be done as follows: Consider b initially empty
buckets. For each index, we pick q random buckets and add this index to these buckets. Notice
that after this process, number of indices per partition might not be the same, but it turns out
that it is enough for us to have them close in expected sense.

To formulate all these mathematically, let Subsets(b, q) denote the subsets of {1, . . . , b} of size
q. Consider the following randomized function,

s ∶ {1, . . . , d}→ Subsets(b, q)
As we explained above, s(i) represents the partitions which index i belongs. Therefore s will
correspond the following partition: For any i ∈ {1, . . . , b} Pi will consist of j ∈ {1, . . . , d} with
i ∈ s(j). We construct our hashing family HL by projecting H(r∗) to each of the partitions. That
is

HL =
b

⋃
i=1

Projection(H(r∗), Pi)

Claim. For any x, y ∈ {0,1}d with ∣∣x−y∣∣ ≤ r, there exists a hash function h ∈HL with h(x) = h(y).

Proof. Very similar to the previous proof, except now we use pigeonhole principle for q copies of
r mismatching indices across b partitions, instead of just 1 copy.

Now that we control the average number of 1s in our hash family with the parameter q, we can
proceed to get a bound on number of bad collisions. We will first prove the following lemma:

Lemma. For any x, y ∈ {0,1}d, and for any h ∈HL:

Pr [h(x) = h(y)] = (1 − q/2b)∣∣x−y∣∣

7



Proof. In order for any hash function h to map x and y to the same value, it must have zeros on
the mismatching indices of x and y. In other words, for any i ∈ {1, . . . , d} with xi ≠ yi, we need to
have hi = 0. There are two cases that might lead to hi = 0.

In the first case, corresponding partition set P for h might not have index i. In that case index
i is basically set to 0 after projection onto P . Since our partition is randomized, probability that
index i was not in the partition is simply 1 − q/b.

In the second case, index i might belong to the corresponding partition P , but was already
zero before projection. Put differently, let h′ ∈H(r∗) be the hash function that is used to generate
h via projection. It might be the case that h′i was already zero. In the previous section we proved
that the probability that h′i = 0 for any h′ ∈ H(r∗) is 1/2. Therefore, probability of the second
case is simply q/2b. Combining these two cases, probability that hi = 0 for any index i is,

1 − q/b + q/2b = (1 − q/2b)

Notice that we constructed our hash family in such a way that for any h ∈ HL and for any
i, j ∈ {1, . . . , d}, hi and hj are independent. That is because, both the partition function s and the
hash family H(r∗) are randomized in an index independent fashion. Therefore,

Pr [h(x) = h(y)] = ∏
xi≠yi

Pr [hi = 0] = (1 − q/2b)∣∣x−y∣∣

Corollary. For any x, y ∈ {0,1}d, expected number of hash functions that map them to same
value is

E [∣{h ∈HL ∣ h(x) = h(y)}∣] = (1 − q/2b)∣∣x−y∣∣ b (2r
∗+1 − 1)

This follows from summing up the expectation of collision for every hash function in HL using the
linearity of expectation.

Now for any query y, we are ready to count the number of bad collisions, i.e. (x,h) ∈ S ×HL pairs
with h(x) = h(y) and ∣∣x − y∣∣ > cr. For any x ∈ S, expected number of hash functions that map x
and y to the same value is

E [∣{h ∈HL ∣ h(x) = h(y)}∣] = (1 − q/2b)∣∣x−y∣∣b (2r
∗+1 − 1)

≤ (1 − q/2b)cr+1b2(rq/b)+1
(1)

If we sum this up for all n vectors in S our bound becomes:

E [#bad collisions] ≤ n (1 − q/2b)cr+1 b2(rq/b)+1

Now we need to pick the parameters b and q in such a way that E [#bad collisions] and ∣HL∣ are

balanced. Since ∣HL∣ ≅ b2(rq/b)+1, it is natural to pick b and q such that the number n (1 − q/2b)cr+1
is close to 1. One such possible choice would be,

b = r and q = 2⌈ln(n)/c⌉

Then if we follow the math,

∣HL∣ < b2rq/b+1 ≤ r 22 ln(n)/c+3 = 8r nln(4)/c

and,

E [#bad collisions] < n (1 − q/(2r))cr r 2q+1 < n exp (−qc/2)) r 2q+1 < r 2q+1 < 8r nln(4)/c,

Therefore our runtime is bounded by ∣HL∣ + E [#bad collisions] = O(r nln(4)/c). Note that this
differs from Classical LSH by a factor ln(4) in the exponent, while avoiding the problem of false
negatives.

8



7 Generalizing to Small Distances

Our simple construction fails again for small distances since this time number of bad collisions
turns out to be really large. For instance, in the above example, when search radius r = 1, expected
number of bad collisions,

E [#bad collisions] = n2r+1−∣∣x−y∣∣ = n2r−cr = n/4 = 228

which does not look promising.

Intuition for our construction. To decrease the number of bad collisions, we will try to increase
the average number of 1’s in our hash functions. We need to achieve an r-covering family with
dense hash functions, so we might need to increase the size of our hash family. Again, it comes
down to finding a sweet spot that balances the size of hashing family and the number of bad
collisions. Our main idea is as follows:

In our simple construction, we used to take a vector v ∈ {0,1}r+1, multiply it with the generator
matrix M ∈ {0,1}d×(r+1) to get a d-dimensional hash function h. Therefore for any i ∈ {1, . . . , d},
hi = Mi v (mod 2). To increase the probability that h[i] = 1, a natural idea would be to increase
the number of generator matrices. Let M1, . . . ,M t be the new generator matrices. We will set hi

to 1 if at least one of the generator matrices M j leads to M j
i v = 1 (mod 2). Mathematically this

can be formulated as,
hi =⋁

j

M j
i v (mod 2)

For any vector x ∈ {0,1}d with ∣∣x∣∣ = r, we should be able to find a hash function in our family
with h(x) = 0. Hence, we need to be able to find a hash function h that has zeros at each of the r
nonzero indices of x. Then this creates t equations per nonzero index, leading to rt equations in
total. So we need to have rt + 1 free variables to guarantee a non-trivial solution to this equation
system. Therefore, it is natural to pick our generator functions from {0,1}d×(rt+1)

To formalize this intuition, let M1, . . . ,M t be randomized matrices from {0,1}d×(rt+1), and we
define a function hv ∶ {0,1}(rt+1) → {0,1}d that satisfies

hv
i =⋁

j

M j
i v (mod 2)

for each i = {1, . . . , d}. Then we construct our hash family HS by generating a hash function for
each {0,1}(rt+1)/0 using function hv. That is

HS = {hv ∣ v ∈ {0,1}rt+1/{0}}

Claim. For any x, y ∈ {0,1}d with ∣∣x−y∣∣ ≤ r, there exists a hash function h ∈HS with h(x) = h(y).

Proof. To map x and y to the same value, h function must cover the mismatching indices of x
and y, i.e. hi must be zero whenever xi ≠ yi. In order for hi to be 0, all of the corresponding t
generator matrices must give M j

i v (mod 2) = 0, since we are using OR operator. This leads to t
linear equations in modulo 2. If we do this for each mismatching index, we get a linear equation
system in modulo 2 with at most rt equations. Since v is a rt + 1 dimensional vector, there exists
a non-zero v that satisfies all these equations. Claim follows.

Now we have an r-covering hash family, and we will try to balance the number of bad collisions
and size of this hash family, using the introduced parameter t. To analyze the number of bad
collisions, we prove the following lemma.

Lemma. For any x, y ∈ {0,1}d, and for any h ∈HS

Pr [h(x) = h(y)] = 2−t∣∣x−y∣∣

9



Proof. Again, to cover mismatching indices of x and y, hi must be 0, whenever xi ≠ yi. Also, In
order to get hi = 0, all of the corresponding t generator matrices must give M j

i v (mod 2) = 0. Since
we created each generator matrix independently, probability that hi becomes 0 is 2−t. Moreover,
bits of h are independent variables. Therefore we get:

Pr [h(x) = h(y)] = ∏
xi≠yi

Pr [hi = 0] = 2−t∣∣x−y∣∣

Corollary. For any x, y ∈ {0,1}d, expected number of hash functions that map them to same
value is

E [∣{h ∈HS ∣ h(x) = h(y)}∣] = 2−t∣∣x−y∣∣(2rt+1 − 1)

This follows from summing up the expectation of collision for every hash function in HS using the
linearity of expectation.

If we sum this up for all x ∈ S, our bound becomes,

E [#bad collisions] ≤ n2−t∣∣x−y∣∣(2rt+1 − 1)
Now we need to pick the parameter t so that E [#bad collisions] and ∣HS ∣ are balanced. Therefore
we need to get n2−t∣∣x−y∣∣ as close to 1 as possible. A natural choice for t would be ⌈logn/cr⌉. For
this t, if one follows through the math, we get

∣HS ∣ < 2tr+1 ≤ 2(log(n)/(cr)+1)r+1 = 2r+1n1/c .

and
E [#bad collisions] < n2−tcr2tr+1 ≤ 2tr+1 ≤ 2r+1n1/c .

Therefore runtime for our algorithm becomes ∣HS ∣ +E [#bad collisions] = O(2rn1/c).

8 Conclusion

In this report, we surveyed elementary Las Vegas algorithms for the approximate nearest neighbor
search problem. We started with a simple construction that worked for a special case and we
generalized it for large and small search radii. Presented algorithms avoid the possibility of false
negatives while achieving comparable runtime performance to the standard Monte Carlo methods.

References

[G+99] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. “Similarity search in high dimen-
sions via hashing”. In: VLDB. Vol. 99. 6. 1999, pp. 518–529.

[AGK06] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. “Efficient exact set-similarity
joins”. In: Proceedings of the 32nd international conference on Very large data bases.
VLDB Endowment. 2006, pp. 918–929.

[Pag16] Rasmus Pagh. “Locality-sensitive hashing without false negatives”. In: Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM.
2016, pp. 1–9.

10


