Time Range Queries for Hereditary Properties
6.854 Final Project

January 26, 2017

Abstract

Time range queries are important for analysing large datasets with
timestamps. Such datasets are common in computational geometry, where
a sequence of points with timestamps often corresponds to a trajectory
of an object. Time range queries in this case check a certain property of
section of the trajectory.

In this paper we review recent general frameworks that can be used to
handle property testing queries for time ranges, and discuss their imple-
mentations for solving certain problems in computational geometry. The
results are limited to hereditary properties, which cover a large variety of
interesting problems.

For two different hereditary properties, we compared the performance
of efficient an algorithm and a naive one in practice. We observed that the
efficient algorithms require more than ten times the amount of code in cer-
tain cases, but the large constant factor associated with it is compensated
when working with large datasets.

1 Introduction

With the abundance of GPS and other movement tracking sensors there is
a large amount of timestamped location data. This has led to an increasing
interest in geometric algorithms dealing with trajectory analysis [1, 2, 3]. In this
work we focus on implementation and analysis of two such algorithms dealing
with hereditary properties [4, 5.

The movement of an object in space can be modelled by a sequence of points
S = s1,...,8,. To analyse the trajectory of the movement, one may want to
check a certain property P for portions S[i, j] = s;,...,s; of S for given values
of ¢ and j. This paper discusses how to efficiently address such queries when P
satisfies the following two properties:

e P is boolean.

e P is hereditary. This means that for a given sequence S, if P(S) is true,
then P(S’) is true for any continuous subsequence S’ of S.



In this paper we discuss and implement two properties for a sequence of
points S = s1,...,8,:

e Monotonicity: S is monotone if there is a direction vector v such that all
vectors (s;, ;i—&-l) have a positive projection on v. In terms of trajectories,
monotonicity shows whether the object travelled more or less in the same
direction.

e (Closeness: S is close if any pair of points in S is at most of distance 1.
One could use closeness queries to detect if a moving object mostly stayed
in the same surrounding.

For a property P satisfying the restrictions above, let j*(i) be the largest
index j such that P holds for S|i, j*(i)] = sy, ..., sj+(;). Now notice, that since P
is a hereditary property P(S[i, j]) = true if and only if ¢ < j < j*(¢). Therefore,
if we construct j* () we can answer property testing queries in O(1). Therefore,
for the rest of the paper our goal will be to efficiently compute j5*(4).

Bokal et al. [4] propose an algorithms that compute j*(i) in O(n) time for
monotonicity, and in O(n log? n) time for closeness. Chan and Pratt [5] describe
a different algorithm to achieve the same result for closeness, but also improve
it to O(nlogn) using fractional cascading.

The rest of the paper is organized as follows: Section 2 describes the naive
algorithms we developed to solve two problems; in Section 3 we review the
general framework that is set in [4] for solving time range query problems, and
show how it is applied to compute j*(¢) for monotonicity. Section 4 reviews the
framework by [5] and its application for the closeness property. We then give
some implementation details in Section 5, and describe the experimental setup
and our tests in Section 6.

2 Naive Algorithms

Suppose that for a sequence of length n a property P can be checked in Tp(n)
time. Then, one can compute j*(i) using binary search for each i. On a step of
a binary search concerning a range [l,7] the algorithm would spend Tp(r — 1)
time. The total runtime of this simple algorithm is O(nTp(n)logn). Call this
algorithm SN (stands for super-naive). For the problems of monotonicity and
closeness we can do better.

2.1 Monotonicity

To detect whether a sequence is monotone or no, we can process the points while
keeping a set of polar angles (field-of-view or FoV) that a direction vector v can
have. Notice that the FoV is always an interval. When a new point arrives we
can update the FoV in constant time. If the FoV ever becomes empty, then
the given sequence is not monotone. This algorithm runs in O(n) time for a
sequence of length n. Using this submodule for SN we would get a O(n?logn)
algorithm for computing j*(¢) for all values of i.



However, doing a binary search for monotonicity is redundant, since we will
do the same computation many times. Instead, for each ¢ proceed with the
FoV computation until it is empty, which will happen precisely when we reach
7*(i) + 1. The resulting algorithm runs in O(n?) time.

2.2 Closeness

The simple method of closeness-check takes O(n?) for a sequence of n points,
because one has to check all pairs of points. This results in SN runtime
of O(n3logn), which is super-slow. We can improve the closeness-check to
O(nlogn) using furthest-point Voronoi diagrams, but that would not qualify
for SN and would also take O(n?log®n) time to compute, which is also not
fast.

Define k*(i) as the largest index such that d(s;,s;) < 1 for all j < k*(i).
Clearly, k*(i) > j*(i) because we are checking for a weaker property. Also,
notice that k* can be computed in O(n?) for all points by calculating all pairwise
distances.

Noticing that

J*(#) = min(5" (i + 1), k*(2)) (1)

we can calculate j*(4) for all points in O(n) extra time if we are given all values
for k*(i). So we found a O(n?) algorithm for computing closeness property for
all subsequences.

3 Monotonicity in Linear Time

Bokal et al. introduced an elegant framework to deal with range queries for
hereditary problems. The key idea in their work is to greedily split the given
set of points into ranges, defined by anchor points, and solve for each using a
divide and conquer. To simplify the reasoning we first define a property matrix
Ap such that

. 1 P(S[i,j]) = true
Ap(i,7) = { 0 P(S[i,j]) = false

See Figure 3 for an example. Suppose that there is an algorithm Jp that, for
a given ¢, finds j*(7) (notice that even if such Jp exists, we are not happy to run it
n times for each i). We use Jp to find anchor points in S as follows. Let ay, be the
index of k' anchor point in S. We define a; = s1, ar = max(1+ag_1;5*(ar_1))
for k > 1. Thus, the anchor points can be found using Jp. Figure 3 shows the
anchor points on A (leftmost image).

Also shown in Figure 3 are rectangles formed using the anchor points. If we
solve a rectangle (find the curve in A separating 1’s from 0’s) for each rectangle,
then we will be done, as stated in Lemma 2.1 from Bokal et al.

Lemma 2.1 [Bokal et al.]: Assume that we have the following two sub-
routines for sequence S and a property P:

(a) For any a =1,...,n find the j*(a), taking Tyreeay(j*(a) — a)
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Figure 1: The property matrix Ap. The blue regions show the locations that
are 1. The left image illustrates the anchor points. The middle one shows the
greedily constructed rectangles from the anchor points. On the right side is the
detailed view of the property matrix. Figure from [4].

(b) Solve a rectangle with anchor points at opposite vertices (anchored rect-
angles). Suppose this module takes Tyt (height(R) + width(R)).

Then we can solve the problem (i.e. find all j*(7)) in time O(n) + Tyreedy((n)) +
Trect (n)

Both of these modules are property specific, but Bokal et al. make another
interesting generic step that explains how solving rectangles can be done using
a divide-and-conquer approach. We will, however, skip that step and focus on
the problem of monotonicity. It turns out that monotonicity does not require
the divide-and-conquer approach to solve anchored rectangles.

3.1 Solving Monotonicity

Section 2.1 discusses how to find j*(¢) in linear time for a given i by using
intervals of polar angles. This algorithm will serve as the subroutine for Lemma
2.1(a).

Consider an anchored rectangle R with a lower-left corner (a,a), width w
and height h.

- By traversing the points S[a, a+w], we can compute for each j = a,...,a+
w the interval of polar angles I; such that S|a, j] is monotone with respect
to all directions in I;.

- By traversing the points S[a — h, a] in reverse order, a similar set I; can be
computed for a — h < i < a, representing the set of monotone directions
for S[i, a).

If i < a < j, then S[i,j] is monotone if and only if I; and I; have a non-
empty intersection. Thus, for each ¢ = a — h,...,a, j*(¢) is the largest index
such that I; N I« (;y # (. Noting that search for j*(i 4 1) can start from j*(i),
we can compute j*(¢) for all ¢ € [a — h,a] in linear time.

k+2



These two subroutines, together with Lemma 2.1 give a linear solution to
the monotonicity problems. We have evaluated Naive algorithm (from Section
2) and this algorithm in Section 6.

4 Closeness in O(nlog”n)

Chan, Prat [5] take a different approach to calculating hereditary properties,
they first efficiently calculate k* values for all the pairs using a range tree [6]
that has a secondary structure to make querying faster, and then they calculate
j* values from those.

During the first part of the algorithm we use a data structure that given a
point 4, could efficiently answer what is the point with smallest index k*(7) + 1
that lies outside a unit circle centered at i. Notice that this is equivalent to
checking whether s; lines in the intersection of unit circles centered at points
Si+1,---,Sk=(i)- Lhe intersection of unit circles is convex and we call it polyarcs,
as it is similar to a polygon, but has arcs of circles as edges instead of straight
lines. In order to check whether a point is inside a polyarc formed by a range
of points in the given sequence, we use a binary range tree.

&) A

Figure 2: A search path finding p = k*(q) + 1 of point ¢q. The search goes up
until it find a range where p lies and then goes down narrowing down the range
until it reaches the leaf p. Figure from [5].

First we build a regular 1 dimensional range tree using indices of the data
points. Each node v of the range tree represents a continuous interval of a given
points, and stores the polyarc that is formed by intersecting unit circles centered
at these points.

Suppose we have an algorithm that can test whether a point is inside a
polyarc in @Q(n) time. Then using the range tree we can find k*(7) for any point
in O(Q(n)logn) time using the following algorithm. It starts the search from a
leaf corresponding to the query point ¢ (see Figure 2).

- In the first “up” phase, we walk upward from ¢ towards the root. Each
time we go up from a left child, we query the secondary structure at right



sibling, to see if there exists a point in that range that is far from gq.

e If no, we can extend the search by going one more level up.

o If yes, the first point far from ¢ is in the right child, so we proceed
to the second step to locate that node.

- In the second (“down”) phase, we walk downward from the current node
to a leaf to locate the far point with smallest index. Each time we descend
from a node, we query the secondary structure at the left child to see if
there exists a point in the left child’s range that is far from ¢

e If no, the point that’s far from ¢ lies in the range of the right child,
so we descend right.

e If yes, we descend left.

After we find k*(7) for all the nodes, we combine those using Equation 1 in
O(n) time to find j*(4) for all 4. This gives total runtime of O(nlognQ(n)).

Now, to compute the intersection of polyarcs we use a relatively standard
technique. It is possible to extend the sweep-line polygon intersection algorithm
by Shamos and Hoey [7], for computing polyarc intersections in linear time,
assuming that the vertices of the shapes are given in sorted order. We can
construct the range-tree from bottom to up, at each level spending O(n) time
to intersect all polyarcs on that level. Therefore, the total construction time of
a range tree is O(nlogn).

By storing the vertices of the polyarcs in sorted order with respect to their
x coordinate we can answer contains queries in Q(n) = O(logn) time using
a binary search. This gives us an O(nlog®n) algorithm to compute j*(i) for
all . The next section contains the details about the implementation of this
algorithm.

5 Implementation Details

In the papers reviewed here ([4, 5]) there are at least 6 algorithms presented.
We wanted to implement algorithm that use frameworks of both papers. In
order to limit the size of the implementation we decided to pick monotonicity
property for its simplicity (and elegance), which was solved in Bokal et al. [4].
We chose to implement the closeness testing algorithm from [5] because it used
many ideas from the class, for example the intersection of convex envelopes in
2 dimensions, range trees.

The implementations of naive algorithms as well as of the efficient mono-
tonicity testing algorithm are relatively easy, so in this paper we skip discussing
them. We implemented the O(nlog2 n) algorithm for solving closeness testing
from [5]. The algorithm has two distinct parts: a high-level tree-range data
structure, and a lower-level data structure for storing polyarcs (see Section 4).
Higher level algorithm was easier of the two, it involved implementing a range
tree and the querying algorithm described in Section 4.



A polyarc is a convex geometric shape, which is defined by a clockwise set of
its vertices like a polygon. Unlike a polygon, each edge of a polyarc is an arc of
a circle. The algorithm needs to be able to find the intersection of two polyarcs,
and also decide whether a query point is inside the polyarc.

Both of these algorithms are similar to those of polygons, but the majority of
the implementation effort was spent to handle the cases specific to polyarcs. Our
representation of polyarcs has two “sides”: upper and lower, respectively the
upper part of the complex shape and the lower one. To intersect two polyarcs
we first find a minimal upper envelope i.e. for each x coordinate we recorded
the polyarc that had a lower upper side. Similarly, we computed a maximal
lower envelope. The area above the maximal lower envelope and minimal upper
envelope is the intersection of two polyarcs. Each of these steps can be performed
in linear time by a sweep line technique.

The envelope representation of polyarcs is also helpful for querying whether
a point is inside the polyarc or no. One needs to simply do a binary search
for the = coordinate of the candidate point. If a vertical line at that location
crosses the higher envelope on a larger value of y than the lower envelope, then
the query point is inside the polyarc.

Overall, we wrote more than 1200 lines of code in C++ for the implemen-
tation of the algorithms, and 800 lines of code for testing. Large part of the
code is dedicated to the closeness algorithm in O(nlog®n). We used C++ for
the implementation so that the overhead that the language adds to the runtime
is minimized. A simple language to write code in is Python, but we think that
in this case the strong type checking of C++ helped us, because of a complex
structure of the code.

6 Experimental Results

We have tested the performance of the algorithms we’ve implemented with syn-
thetic datasets, which we tried to model based on some potential problems where
the algorithms could have been used.

6.1 Monotonicity

For monotonicity we have tried looking at a trajectory of a particle moving
steadily along x axis, but with some noise added to the movement. This datasets
models a typical problem where we want to find for how long the particle moves
monotonically. The goal is to find all subsequences of intervals that the trajec-
tory had some constant direction. In Figure 3 you can see the property matrix
(i.e. the region where the property holds) when the noise added is a Gaussian
noise with standard deviations o, = 0.05, 0, = 1. We chose these characteristics
of the noise to have an interesting looking property matrix, where the average
length of longest subsequence is 1520 (vs 5000 if there was no noise).

You can see that the area of the region where the property is substantial, so
we expect Naive algorithm to perform worse than the faster version that we’ve



Monotonicity: moving point with Gaussian Noise.
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Figure 3: Property matrix for movement monotonicity for time intervals for a
point moving steadily in x direction with Gaussian noise with o, = 0.05, 0, = 1.

points in dataset | Bokal et al. | Naive
1000 0.6 3.6
3333 2.1 12.8
10000 5.8 43.5
33333 19.3 142.2
100000 64.2 416.8
333333 202.0 1,398.2

Figure 4: Runtimes (in milliseconds) of monotonicity algorithms Naive and
Bokal et. al for moving point in x direction with Gaussian noise. Mean value
of j*(i) — ¢ = 1520 for 10,000 points.

implemented. Figure 4 shows runtime differences in milliseconds between Naive
algorithm and algorithm we presented from Bokal et al. From the runtime we
can see that Bokal et al. clearly outperforms the Naive algorithm.

If we were to look at a different dataset, e.g. a random walk, the performance
results could be different. Figure 5 shows that the runtimes of the two algorithms
are actually very close in practice for this case. This happens because the
property matrix has few true values, in this case average value of j*(i) —i = 4.0,
so naive algorithm performs very few comparisons, whereas Bokal et al. still
have to build the range tree with all the auxiliary data structures on all the
nodes.



points in dataset | Bokal et al. | Naive
3000 1.9 2.6
10000 6.0 8.3
30000 18.0 25.0
100000 61.7 89.5
300000 190.5 258.3
1000000 629.5 909.6

Figure 5: Runtimes (in milliseconds) of monotonicity algorithms of Naive and
Bokal et. al for random walk dataset. Mean value of j*(i) —i = 4.0 for 10,000

points.

6.2 Closeness

diameter: Random Walk
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Figure 6: Property matrix for checking 1 distance closeness on a random walk

with step size 0.3

For testing the closeness algorithm, we have generated points from a random
walk. At each step we uniform randomly pick a direction, and move 0.3 distance
in that direction. And we want to know all subsequences of the walk that are
clustered together within distance of 1.

Figure 6 shows the property matrix when running closeness algorithm on the
random walk data. Again we have picked the step size (0.3) to have a relatively

high mean value for j*(i) — ¢ = 1013.

Figure 8 shows runtime comparisons for different dataset sizes. Notice that



points in dataset | Chan Prat | Naive
1000 9.3 0.5
3333 28.3 1.5
10000 88.7 4.5
33333 307.1 15.5
100000 815.2 46.8
333333 2,736.9 157.3

Figure 7: Runtimes (in milliseconds) of closeness algorithms Naive and Chan,
Prat on moving point datasets. Mean value of j*(i) — ¢ = 0.16 for 10,000
points.

points in dataset | Chan/Prat | Naive
3000 79.3 1,316.2
10000 269.7 5,998.3
30000 886.3 26,716.6
100000 2,751.2 90,934.6

Figure 8: Runtimes (in milliseconds) of closeness algorithm Naive and Chan,
Prat on random walk datasets. Mean value of j*(i) — ¢ = 1013. for 10,000
points. We have included less data points because runtime of Naive algorithm
became too large.

Chan Prat algorithm outperforms the Naive algorithm by a big margin, which
increases as number of points increase.

Whereas if we run the same algorithms on the dataset from Section 6.1,
where we expect to have very small values for closeness property, we see (Figure
7) that Naive algorithm is doing better. This happens because building the range
tree with circle intersections costs O(nlogn), whereas the expected length of
subsequence is much less than logn, in case of 10,000 points it equals to 0.16

7 Conclusion

In this report we looked at two frameworks for testing queries for time ranges[4,
5], and implemented each of the frameworks for solving a corresponding heredi-
tary property problem. Besides implementing the frameworks we had to imple-
ment other algorithms, e.g. sweep line and range trees, to solve corresponding
hereditary property problems.

We showed that both frameworks outperform simpler algorithms that have
worse theoretical bound on synthetic datasets that mimic real life problems. We
also showed that there is significant overhead that comes with these frameworks
and sometimes if the dataset is simple naive algorithms outperform (or are
equivalent) more complex ones.

We learned that implementing computational geometry algorithms is tricky
because all the algorithms have a lot of edge cases, and internal structure of

10



data structures is very important to get the algorithm right.
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