
Unsplittable Flows

Hoon Cho (hhcho@mit.edu) and Alex Wein (awein@mit.edu)

6.854 Final Project

Abstract

An unsplittable flow in a multicommodity network is a flow that routes each commoidty on a single
path. In this paper, we introduce the unsplittable flow problem and an open conjecture of Goemans,
which states that given a fractional flow it is possible to construct an unsplittable flow that only overflows
each edge by at most the maximum demand of a commodity. We provide an intuitive explanation of the
proofs of the conjecture for the following two special cases: unweighted graphs [1], and weighted 2-tier
graphs for which the unsplittable flow problem is equivalent to a particular scheduling problem [2]. Then,
we describe our unsuccessful attempt at extending the proof of the conjecture for 2-tier graphs to more
general 3-tier graphs and discuss the difficulties and limitations of our approach.

1 Introduction

We will be discussing a variant of max flow called the single-source unsplittable flow problem. Suppose we are
given a directed graph G = (V,E) with a single source s and multiple terminals t1, . . . , tk with corresponding
demands d1, . . . , dk > 0. Each terminal is located at some node in the graph and we allow multiple terminals
to share a single node. A flow is said to meet the demands di if the net inflow at every node (except the
source) is exactly equal to the sum of the demands of terminals located at that node. In particular, the flow
must be conservative at all nodes (except the source) that do not contain terminals.

If we impose capacities on the edges and ask whether there exists a flow meeting all the demands, we have
arrived at the single-source multicommodity flow problem. This problem captures the following real-world
shipping problem. Suppose we have a number of different commodities, say apples, bananas and oranges.
The graph represents a network of possible shipping routes. We want to deliver d1 units of apples from s
to t1, d2 units of bananas from s to t2, and d3 units of oranges from s to t3. The total number of units
(apples plus bananas plus oranges) travelling along a particular shipping route cannot exceed the capacity
on that edge. The multicommodity flow problem asks whether it is possible to simultaneously satisfy all the
demands without exceeding any of the capacities.

Note that the multicommodity flow problem can be reduced to the max flow problem as follows. Given an
instance of multicommodity flow, add a supersink T and for each i, an edge (ti, T) with capacity di. Then
check whether the resulting max flow instance has a flow that saturates all edges (ti, T).

It is important to recognize the following subtlety. We defined a solution to multicommodity flow to simply
be a flow f : E → [0,∞) on the graph. This flow tells us the total number of units shipped along a particular
route, but it does not tell us how many of these units are apples, how many are bananas, and how many
are oranges. A more informative solution would be what we are going to call a flow with allocations. A flow
with allocations is a flow f that solves multicommodity flow together with a decomposition f = f1 + · · ·+fk
of f into one flow for each commodity. The flow fi must have outflow di at s, inflow di at ti, and must be
conservative at all other nodes. A flow with allocations tells us how the individual commodities are routed.
Above we have shown how to find a flow (without allocations) for the multicommodity flow problem (pro-
vided that one exists), but does this mean we can find allocations for that flow? The answer is yes. To do
this, decompose the flow into paths and cycles. Remove all the cycles and note that the resulting flow still
satisfies all the demands. Then consider the terminals ti one by one and assign to each ti enough paths (or

1

fractions of paths) from s to ti to exactly meet the demand di. This justifies asking only for a flow (without
allocations) as a solution to multicommodity flow.

Now we are ready to introduce the concept of unsplittable flows. So far we have considered flows that may be
fractional in the following sense. In our fruit-delivery problem, the solution might take half the apples along
one path to t1 and the other half along a different path to t1. But what if we want to send all the apples
along a single path, send all the bananas along a single (possibly different) path, and so on? This is the idea
behind unsplittable flows. A flow with allocations f = f1 + · · ·+ fk (as defined above) is unsplittable if for
each i there exists a path from s to ti such that fi is zero everywhere except on that path. To emphasize
this distinction, arbitrary flows that are not necessarily unsplittable will be called fractional. Note that an
unsplittable flow is, by definition, “with allocations”. On the other hand, fractional flows are assumed to be
“without allocations” unless otherwise specified.

Now that we have introduced the notions of fractional flows and unsplittable flows, we might wonder how
restrictive the unsplittable condition is. For instance, if we have a fractional flow that meets particular
demands, can we produce an unsplittable flow that meets those same demands without increasing the
amount of flow on any edge? It is easy to see that the answer is no. However, an algorithm by Dinitz, Garg,
and Goemans [1] shows that a fractional flow can be converted to an unsplittable flow without increasing
the flow on each edge by “too much” in the following sense. Let dmax = maxi di be the largest demand.

Theorem 1. (Dinitz, Garg, Goemans [1]) Given a fractional flow f meeting demands di, there exists an
unsplittable flow meeting the same demands such that the total flow on any edge e is at most f(e) + dmax.

In converting a fractional flow to an unsplittable flow, you only need to increase the flow on each edge by
at most dmax. We cannot hope to do better than this because [1] gives examples of instances for which this
increase is unavoidable.

A natural extension of the unsplittable flows problem is the weighted version in which a nonnegative cost
c(e) is assigned to each edge e. The total cost of a flow is

∑
e∈E f(e)c(e). Now the objective is to convert a

fractional flow to an unsplittable flow as above, with the additional constraint that the total cost may not
increase. As discussed in [3], Goemans has conjectured that this is possible.

Conjecture 1. (Goemans) Given a fractional flow f of total cost C that meets demands di, there exists an
unsplittable flow with cost ≤ C meeting the same demands such that the total flow on any edge e is at most
f(e) + dmax.

We will start by explaining the proofs of two special cases of this conjecture. The first is the unweighted
case, Theorem 1, where the costs are all zero. The second is the weighted case on a restricted class of graphs
corresponding to a particular well-studied scheduling problem. We will then explain some of our attempts
to prove the conjecture and why they failed.

2 Proof for the Unweighted Case

In this section we present the proof of Theorem 1 above, the unweighted (i.e., no costs) version of the
Goemans conjecture. The proof is an algorithm that takes an initial fractional flow and produces the desired
unsplittable flow. In the following sections we describe this algorithm, explain the intuition behind it, and
prove its correctness. We start with an overview of the main features of the algorithm before giving a
complete description.

2.1 Movement of Terminals

The algorithm makes progress by moving terminals closer to the source in order to reduce the problem to a
smaller subproblem. Suppose terminal ti is located at vertex v and the algorithm has just decided that the
unsplittable path for ti should arrive at v using edge e = (u, v). (This of course requires f(e) ≥ di.) Then we
move terminal ti from v to u and decrease the flow on edge e by di units. This gives us a smaller subproblem.

2

Once we solve the smaller problem we can add the di units back to e to get our final solution. The algorithm
will move terminals closer to the source until all terminals arrive at s, at which point the algorithm is done.
The very first step of the algorithm will take the input fractional flow and make it acyclic (by applying
flow decomposition and removing cycles) so that the notion of “closer to the source” is well-defined. Note
that when we move terminals we decrease the flow on certain edges. If the flow on an edge reaches zero we
remove the edge from the graph in the smaller subproblem we have just created. This means we can assume
at all times that every edge has positive flow, an assumption that will be necessary in the next section.
Note that to extract the final solution we can take a terminal and retrace the path through which it moved
throughout the execution of the algorithm. This path is the path that should be used to route demand to
that terminal. Equivalently, the demands routed across a given edge precisely correspond to the terminals
that moved across that edge at some point during the execution of the algorithm.

2.2 Alternating Cycles

The fundamental step in many flow algorithms is to find some sort of “augmenting structure” in the graph
and to “augment” flow along it in some way. This algorithm is no exception. In particular, the augmenting
structure is something called an alternating cycle, which can be found using the following simple steps.

1. Start at any vertex v.

2. Never go back on the same edge that you just arrived on.

3. Follow a forward edge (e.g., follow e = (u, v) from u to v) whenever possible.

4. Follow a backward edge (e.g., follow e = (u, v) from v to u) if you cannot follow a forward edge without
violating step 2.

5. When you reach a vertex w that you have visited before, stop. The resulting closed loop (without the
path from v to w) is an alternating cycle.

The following figure from [1] illustrates an alternating cycle.

It is called alternating because of its alternating forward and backward paths. Note that if a vertex has only
one incident edge (including both incoming and outgoing edges) then the procedure above might get stuck
and fail to find an alternating cycle. In Section 2.3 we will show that the algorithm ensures that this never
happens. Note that a vertex at which you change from going forward to going backward must contain at
least one terminal. This is because the only time you change from going forward to going backward is if
you arrive at a node with no outgoing edges. But such a node must have at least one terminal because a
vertex without any terminals must obey flow conservation and must therefore have at least one outgoing edge.

3

Once we have an alternating cycle we can augment flow along it as follows. Decrease flow on the forward
edges and simultaneously increase flow on the backward edges by the same amount until one of the following
happens:

• The flow on some (forward) edge drops to zero. In this case the edge is removed from the graph,
thereby making progress.

• For some terminal tj at some vertex x and for some (backward) incoming edge (y, x), f(y, x) increases
from below dj to dj . This makes progress because it will allow us to move terminal tj from x to y.

Note that augmenting along an alternating cycle preserves flow conservation. However, it does increase the
flow on some edges (namely the backward edges) which is a potential problem because we need to make sure
the flow on each edge increases by no more than dmax. We will explain how this is resolved in Section 2.3.

2.3 The Algorithm

Now we are ready to give a complete description of the algorithm. We will attempt to present it in an
intuitive way in which all definitions and rules are motivated. The essence of the algorithm is the two steps
described above. In each iteration we find an alternating cycle and augment flow along it. Then we move
terminals closer to the source according to a certain rule. However, there are some technical details that
make the algorithm somewhat more complicated. These are to deal with two important issues:

(i) We need to make sure that the flow on each edge does not increase by more than dmax.

(ii) We need to ensure that we can always find an alternating cycle.

We will start by talking about how to resolve issue (i). First we need a definition.

Definition 1. An edge (u, v) is singular if v and all the vertices reachable from v have out-degree at most
1. Equivalently, the vertices reachable from v induce a directed path.

The motivation behind this definition is the following. Note that every backward edge in an alternating
cycle is singular. Furthermore, recall that the only edges to which flow is added are the backward edges
in an alternating cycle. Also note that once an edge becomes singular it can never go back because edges
can only be removed from the graph and never created. The result of all this is that the algorithm only
adds flow to an edge after it becomes singular. Recall that for a given edge e, the demands routed across
it are those corresponding to the terminals that move across it at some point during the execution of the
algorithm. Since we only add flow to singular edges, we now know that all the terminals that move across
e before e becomes singular have total demand at most f(e) where f is the initial fractional flow. This is
because when we move a terminal ti across an edge e, we decrease f(e) by di and f(e) remains nonnegative.

As a result, we can resolve issue (i) by ensuring that at most 1 terminal moves across e after it becomes
singular. We can do this by making sure that whenever a terminal moves across a singular edge, the singular
edge is left with zero flow and is removed from the graph. This motivates the following rules for moving
terminals at each iteration of the algorithm: move terminal ti from v to u whenever either

(1) (u, v) is a singular edge and f(u, v) = di, or

(2) (u, v) is not singular and f(u, v) ≥ di.

If it is possible to do either (1) or (2), choose (1). These rules essentially say “move terminals whenever
possible, but don’t move across a singular edge unless it causes the edge to be removed.” During each
terminal-moving phase we move terminals according to rules (1) and (2) until no more terminals can be
moved. This means a single terminal might move across more than one edge.

Finally we have motivated all the steps in the algorithm. We still need to resolve issue (ii) but first we will
formally describe the algorithm.

4

Algorithm 1. (Dinitz, Garg, Goemans [1])

Input: G = (V,E) with source s and terminals t1, . . . , tk, demands d1, . . . , dk, fractional flow f

1. Use flow decomposition to make f acyclic.
2. Move terminals closer to the source wherever possible.*
3. Identify singular edges and label them as singular.
4. Find an alternating cycle and augment flow along it.
5. Move terminals according to rules (1) and (2) above, using the labels from step 3.**
6. If all terminals have reached the source, stop. Otherwise go to step 3.

* Step 2 does not adhere to rules (1) and (2) above. It simply moves ti from v to u whenever f(u, v) ≥ di.
This does not interfere with our resolution of issue (i) because flow has not been increased on any edges yet.

** In step 5, an edge is only considered singular if it was singular at the beginning of the iteration (step 3).
We will need this fact later for resolving issue (ii). Note that this does not interfere with our resolution of
issue (i) because an edge that just became singular (in step 4) has not had any flow added to it yet. This
is clear because we only add flow to backward edges in the alternating cycle, and the alternating cycle is
chosen so that all backward edges are already singular.

Now we need to resolve issue (ii) by making sure that the algorithm never gets stuck while trying to find an
alternating cycle. No additional modifications to the algorithm are necessary in order to guarantee this. As
mentioned earlier, the only way the algorithm can fail to find an alternating cycle is if it arrives at a degree-1
(including both incoming and outgoing edges) vertex via its only incident edge. We will prove that this can
never happen.

First consider the case where you reach a vertex with a single outgoing edge (and no incoming edges). Due
to flow conservation, this vertex must be the source. If the algorithm chose to start at the source when
building an alternating cycle then it is not actually stuck because it can just move forward along the one
outgoing edge. The case we have to worry about is if a backward path goes all the way back to the source.
But recall that backward edges are singular and so this can only happen if the single outgoing edge from
the source is singular (i.e., the entire graph is a single directed path). If this is the case it is easy to see (by
induction, starting at the end of the path) that all terminals should already have been moved to the source.
This rules out the problem of getting stuck at a vertex with a single outgoing edge.

Now we will rule out the problem of getting stuck at a vertex v with a single incoming edge (u, v) (and no
outgoing edges). If we suppose this problem arises then by flow conservation, v must contain at least one
terminal ti. Since (u, v) is the only incoming edge for v, it must have enough flow to meet ti’s demand, i.e.
f(u, v) ≥ di. This motivates the following definition.

Definition 2. A terminal ti at vertex v is irregular if it has an incoming edge (u, v) with f(u, v) ≥ di.
Otherwise it is called regular.

We have just seen that v is an irregular terminal. The following fact about irregular terminals completes
our resolution of issue (ii) because it contradicts our assumption that v has a single incoming edge.

Lemma 1. A vertex containing an irregular terminal must have at least 2 incoming edges.

To prove this statement, consider the same setup above where irregular terminal ti is stationed at vertex
v with f(u, v) ≥ di. We might wonder why ti was not moved from v to u last iteration. According to the
rules for moving terminals, this can only happen if (u, v) is singular and f(u, v) > di. Note that before the
first iteration of the algorithm (right after step 2), there are no irregular terminals. So how can an irregular
terminal be created? The rules for augmenting flow prevent f(u, v) from going from below di to above di
while ti is at v, so v must have moved to terminal v from say w, and at this point we must already have
had f(u, v) > di. Let j be the iteration at which ti moved to v. At this point (u, v) must already have
been singular or else ti would have moved to u. Recall that in defining the algorithm we needed to add the
technical condition that edges did not count as singular (for the purposes of terminal movement) unless they

5

were already singular at the beginning of the iteration. This means (u, v) was already singular at the begin-
ning of iteration j. But by the definition of singular, (v, w) must also have been singular at the beginning of
iteration j. But this means ti moved across a singular edge. This can only happen if the singular edge was
immediately removed from the graph. What we have shown so far is that an irregular terminal can only be
created at a vertex if it moves there and destroys the vertex’s only outgoing edge in the process. Therefore
a given vertex can only contain at most one irregular terminal. To complete the proof, recall f(u, v) > di
and that v has no more outgoing edges, so v must contain at least one other terminal. This terminal must
be regular. By flow considerations this implies that v has at least 2 incoming edges as desired.

Now we have presented the algorithm and shown that it works, completing the proof of the Goemans
conjecture in the unweighted case.

3 Proof of Conjecture on 2-Tier Scheduling Graphs

In this section we describe a result [2] that proves the Goemans conjecture for a particular class of “2-tier”
graphs.

Consider the (seemingly-unrelated) problem of scheduling jobs on parallel machines with costs. The objective
of the problem is to process all jobs while minimizing the total cost incurred. Scheduling job j on machine
i requires a processing time of pij and incurs a cost of cij . There is an additional constraint that each job
is processed by exactly one machine and that each machine i is only available for Ti time units. Shmoys
and Tardos [2] give a polynomial time algorithm that, given a value C, either proves no feasible schedule
of cost C exists or finds a schedule of cost at most C where each machine i is used for at most 2Ti time
units. Interestingly, this result corresponds to a proof of the Goemans conjecture on 2-tier scheduling graphs.
In this section, we will outline the proof of the conjecture on 2-tier graphs based on the ideas presented in [2].

First, we establish the connection between the scheduling problem and unsplittable flows. A special case of
the scheduling problem where the processing time of each job is constant across all machines (pj = pij ,∀i)
can be viewed as an unsplittable flow problem on the following 2-tier graph

s

v1

v2

vM

t1

t2

tN

where the terminals t1, . . . , tN represent the jobs and the nodes in the intermediate layer v1, . . . , vM represent
the machines. Each terminal tj has demand pj . Each edge connecting the source s to vi has zero cost and
capacity Ti to ensure that only a total of Ti processing time is allowed for machine i. In addition, each edge
between vi and tj has infinite capacity and cost cij/pj per unit flow. In this alternative representation, a
flow of value f along a path s → vi → tj semantically represents job j being processed for f time units
on machine i. Finding a minimum cost unsplittable flow meeting all demands is equivalent to solving the
original scheduling problem where each job can only be processed by a single machine.

Now, we proceed to describing the proof of the conjecture for this special case. Let us assume we are given
a fractional solution that achieves an overall cost C. In particular, let xij be the fraction of job j allocated
to machine i. Then, we have that

6

∑
i,j

cijxij = C,

∑
j

xijpj ≤ Ti,∀i,∑
i

xij = 1,∀j,

xij ≥ 0,∀i, j.

The Goemans conjecture posits that we can find an integral solution {x̃ij} (i.e. an unsplittable flow) such
that

∑
i,j

cij x̃ij ≤ C,

∑
j

x̃ijpj ≤ Ti + max
j

pj ,∀i,∑
i

x̃ij = 1,∀j,

x̃ij ∈ {0, 1},∀i, j.

To show this, we are going to use a novel rounding procedure proposed by Shmoys and Tardos [2] based on
binning. An intuitive explanation of the technique is the following. For each machine, we are given a number
of job-pieces (i.e. fractions of jobs) that are scheduled on it. We will pack these job-pieces into small bins in a
particular fashion. Each machine will have its own set of bins. At most one job from each bin will be chosen
to be scheduled on the machine. The key idea is that the construction guarantees a “cascading” or “shifting”
effect where the job chosen from a particular bin has processing time no greater than the total processing
time of the previous bin. As a result, the processing time for a machine only increases by pmax = maxj pj
over the fractional solution. The increase in pmax is due to the job in the first bin, since there is no previous
bin to pair it up with.

Now we give a detailed formal description of the binning idea. For each machine i, we sort the associated
positive xij ’s in decreasing order of processing time of job j. Then, we greedily pack these xij ’s into bins of
size 1 in that order. If a bin overflows, an xij may be split between two bins, e.g. we might have xij = 2

3
with 1

2 in one bin and 1
6 in the next bin. For each machine, all bins except possibly the last will be full, i.e.

size 1. Formally, assuming p1 ≥ · · · ≥ pN without loss of generality, the kth bin for machine i contains job j
if xij > 0 and if either k− 1 ≤

∑j−1
j′=1 xij′ < k or k− 1 <

∑j
j′=1 xij′ ≤ k. Note that each job can be in up to

two bins for each machine. Once we have created bins for every machine, we construct a bipartite matching
graph between jobs and machines where each machine node is split into d

∑
j xije nodes, one for each of its

bins. Then, we add an edge between job j and the node corresponding to the kth bin of machine i if that
bin contains at least part of xij . The following figure illustrates this process. We are considering a single
machine i and jobs a, b, c, and d.

xiax xib xic xid
0.5 0.8 0.5 0.9 xiax

xib xic xid

{a,b} {b,c,d} {d}

xib

xid

i(1) i(2) i(3)

a b c di(1) i(2) i(3)
Machine i:

7

Let us denote the resulting bipartite graph as B. If we set the weight associated with each edge between
job j and the kth bin of machine i to be the actual amount of xij included in the corresponding bin and set
the cost to be cij , the set of edge weights over the entire graph forms a fractional matching of jobs to the
duplicated machine nodes in B with total cost C. Note that the sum of weights associated with the edges
connected to each job i is equal to

∑M
i=1 xij = 1.

Now, since B is a bipartite graph and there exists a fractional matching that achieves a cost of C, there
exists an integral matching with the same cost or less. This is a well-known property that comes from the
fact that the polytope for the bipartite matching LP has integral extreme points. Given an integral matching
we can construct an unsplittable flow solution by simply assigning job j to machine i if one of the edges
between job j and machine i in B is used in the matching. This gives us the rounded solution. In order to
analyze the amount of workload on each machine in this approximate solution, we consider the workload
accounted for by each bin in the original fractional solution. Let bik be the original workload of the kth
bin of machine i, which is defined as the sum of weights associated with edges connected to the bin in B
each multiplied by the processing time of the corresponding job. Note

∑
k bik =

∑
j pjxij . With the integral

matching, each bin is now assigned to at most one job. Because we rearranged the jobs in decreasing order
of processing time during the binning procedure, the processing time of job j assigned to the kth bin in the
integral matching is at most bi(k−1), since bi(k−1) is a convex combination of processing times that are at
least pj . Thus, the sum of all processing times assigned to machine i is upper bounded by maxj pj +

∑
k bik

where the first term bounds the processing time of the job matched with the node corresponding to the first
bin. We have shown that the workload on each machine increases by at most maxj pj when we round the
fractional solution to obtain the unsplittable flow, while the total cost remains at most C. This concludes
the proof of the Goemans conjecture on 2-tier scheduling graphs.

4 Our Proof Attempts for the General Conjecture

In this section we discuss our own attempts to prove the Goemans conjecture. None of our attempts were
successful but we are able to explain (with proof) why a number of natural approaches to the problem are
insufficient to resolve the conjecture.

4.1 Extensions of the 2-Tier Scheduling Proof: Matching and Binning

Our initial goal for the project was to extend the result for 2-tier graphs to slightly more complicated 3-tier
graphs, which is illustrated below.

s

u1

u2

uK

v1

v2

vM

t1

t2

tN

Although we were not able to prove the conjecture for this special case, we obtained some useful insights
during the process about what aspects of 3-tier graphs make it harder to prove than 2-tier graphs. We will
explain our approach to tackling 3-tier graphs and discuss what we learned in detail.

An important step in the proof of the conjecture for 2-tier scheduling graphs is formulating the rounding
procedure as a minimum cost bipartite matching problem, which conveniently has an integral optimal solu-
tion. As an attempt to transform 3-tier (or more general) graphs into an equivalent matching problem, we
construct the following three-layer path graph:

8

1
2

3

4

a
b
c
d
e

t2

t1

Edges Paths Targets

1

2

3

4

5

t1

t2

5

s

The first layer consists of nodes representing each edge in the original graph except for the ones that are
directly connected to the terminals, the second layer consists of nodes representing each unique path from
the source to the terminals, and the third layer consists of the terminal nodes. The connectivity between the
first and the second layer reflects the set of edges each path contains, and a path node in the second layer is
connected to a terminal node in the third layer only if the path leads to that terminal in the original graph.
Now an unsplittable flow is just a matching between the terminals and paths that matches every terminal.
However, this is not quite a matching problem because we are constrained not by the total demand of termi-
nals assigned to each path node but to the total demand of terminals assigned to each edge node. In order
to avoid increasing the flow on any edge by more than dmax, the idea is to use a similar binning approach
to bin each edge nodes in the first layer of the paths graph based on a fractional solution and to then find
an optimal integral matching between the bins and the terminals, mediated by the path nodes. Here, we
immediately see the complexity introduced by going from 2-tier to 3-tier graphs. In 2-tier scheduling graphs,
each path node is connected to a single node in the first layer, enabling the matching problem to be reduced
to bipartite matching by collapsing the intermediate layer. In fact, the resulting bipartite matching graph is
equivalent to what we constructed in the proof for 2-tier graphs. However, as soon as we introduce another
tier to the graph, selecting a particular path node to match with a terminal forces us to use multiple edge
nodes in the first layer. In other words, we have what we call a fork matching problem: for each terminal we
need to pick a fork structure connecting the terminal to a path node and connecting this path node to two
edge nodes (or more accurately, to one bin in each of two edge nodes). The costs can be put on the edges in
the second (rightmost) tier by computing the total cost of each path. Each fork structure “uses” two edge
nodes, and the objective of the fork matching problem is to choose a fork stucture for each terminal so that
each edge node is used at most once.

We have now shown that 3-tier unsplittable flows reduces to the fork matching problem in the same way
that 2-tier unsplittable flows reduces to bipartite matching. Recall that the 2-tier proof required the fact
that every extreme point of the bipartite matching LP is integral. If we could prove that every extreme
point of the fork matching LP is also integral then we could complete the proof for the 3-tier case. However,
the following counter-example shows that a general fork matching problem may not have an integral optimal
(min-cost) solution.

1

2

3

4

∞ a

b
c

d
e

t2

t1

The goal of the fork matching problem in this graph is to match the terminals t1 and t2 to the paths a, b,
c, d, e. Each chosen path node connects to a bundle of edges, forming a fork structure. As indicated in
the figure, assume that the cost on the edge (1, a) is very large. In this particular example, any integral

9

matching forces t1 to be matched with 1, because the fork b conflicts with all of the available options for t2.
One can find a better fractional solution by assigning the weight of 1/3 to c, d, and e for t2, in which case t1
can assign the weight of 1/3 to b, thereby substantially reducing the overall cost incurred by the edge (1, a).
Thus, a minimum cost fork matching problem does not always have an integral solution. It is important to
note that this counter-example does not completely undermine the potential of our path graph approach for
3-tier graphs. This is because the graph used in the counter-example is not a path graph generated from an
actual multicommodity flow network. This means that we could conceivably still hope that all fork matching
problems arising from actual flow networks have integral optimal solutions. However, the counter-example
does suggest that we need to consider the structural constraints of realizable path graphs if we want to show
integrality of optimal solutions.

4.2 Impossibility Result Regarding Flows With Allocations

In the previous section we explored what we thought was the most natural way to try to extend the proof
of the conjecture from the 2-tier case to a more general case. We found that it didn’t seem hopeful for a
number of reasons, including the fact that the fork matching problem LP does not always have integral ex-
treme points. In this section we prove a more general impossibility result that shows that a particular class of
algorithms, which we will call “algorithms with allocated input” cannot be used to prove the conjecture. The
approach from the previous section is an algorithm with allocated input, so this section provides evidence
that those techniques cannot be applied to fully general flow graphs, at least without significant modifications.

Now we describe what we mean by algorithms with allocated input. Recall from Section 1 that in a k-
commodity setting, a flow with allocations is a flow with a decomposition f = f1 + · · ·+ fk describing how
much of each commodity flows on each edge. An algorithm that proves the conjecture would take a flow
(without allocations) and produce an unsplittable flow satisfying the conditions of the conjecture. However,
consider instead an algorithm that takes as input a flow with allocations f = f1 + · · · + fk and produces
an unsplittable flow that respects these allocations, i.e. commodity i can only be unsplittably routed across
an edge e if fi(e) > 0. Equivalently, suppose our algorithm first takes an input flow and produces arbitrary
feasible allocations for it, and then proceeds to find an unsplittable flow that respects these allocations. We
call this type of algorithm an algorithm with allocated input.

We will be showing that no algorithm with allocated input can prove the conjecture, even in the unweighted
case.

Theorem 2. There does not exist an algorithm with allocated input that takes a flow with allocations and
produces an unsplittable flow that both respects these allocations and satisfies the conditions of Theorem 1.

We know that Michel Goemans has been aware of this fact but to the best of our knowledge it is unpublished.
The proof presented here is our own.

The main idea of the proof is that there may not exist an unsplittable flow that respects a given flow with
allocations. Before we prove this we will discuss the implications of this result. Note that the fork matching
idea from the previous section is an algorithm with allocated input. This is because we applied the binning
technique to the edge nodes, and in order to create bins you need a fractional solution to the fork matching
problem. In other words, we are starting with a fractional assignment of terminals to paths. Furthermore
we are expecting our final solution to assign every terminal to a path that it was assigned to (with nonzero
weight) in the fractional assignment. But this implies that we are starting with a flow with allocations and
asking for an unsplittable flow that respects these allocations. By Theorem 2, this is impossible. More gen-
erally, we can also rule out a number of algorithms that attempt to extend the binning technique to general
graphs. A natural first step for a binning algorithm would be to find an arbitrary flow with allocations and
to then bin each edge based on these fractional allocations. We would then try to pick one demand from
each bin to route across the edge. This runs into the same problem as above because this would yield a flow
that respects the input allocations. This is good evidence that we will need more than the ideas from the
2-tier proof in order to prove the general case of the conjecture.

10

Now we prove Theorem 2 with the following counter-example, which consists of a graph and a flow with
allocations for which there does not exist an unsplittable flow that both respects these allocations and satisfies
the conditions of Theorem 1.

t1

t2

s

For clarity some edges go off the bottom of the figure and wrap around to the top. The terminals t1 and t2
each have unit-demand. The black arrows show 3 disjoint paths from s to t1. Let the fractional flow with
allocations assign t1 to each of these paths with weight 1

3 . The white arrows show 3 disjoint paths from s
to t2. Let the fractional flow with allocations assign t2 to each of these paths with weight 1

3 . Note that the
flow on any edge is at most 2

3 in the fractional solution. Theorem 1 demands that the flow on an edge can
increase by at most dmax = 1, so our unsplittable flow is never allowed to route both commodities across
the same edge. In order to make the unsplittable flow respect the allocations, we need to choose 1 of the 3
black paths for t1 and 1 of the 3 white paths for t2. However, no matter which paths we choose they will
always share an edge, causing both commodities to be routed across the same edge. Therefore there is no
unsplittable flow that both respects the allocations and satisfies the conditions of Theorem 1. This completes
the proof of Theorem 2.

5 Conclusion

We have introduced the concept of unsplittable flows and described an open conjecture of Goemans. We
have explained the proof of the conjecture for two special cases. The first was the unweighted case where
all edges have cost zero, and the second was the weighted case but restricted to 2-tier graphs that capture
a particular scheduling problem. We then discussed some of our own ideas for proving the conjecture in
general. The key ideas of matching and binning from the 2-tier proof do not seem to extend to the general
case. We justified this with some impossibility results. Namely, we showed that the fork matching problem
does not necessarily have integral extreme points, and so the 2-tier proof does not generalize directly. More
generally, we showed that any technique that starts with a fractional flow with allocations is doomed to
fail for constructing a proof of the fully general case of the conjecture. This rules out the possibility of the
binning technique from the 2-tier proof unless substantial modifications are made to it. An additional idea
that we did not have time to explore here is the possibility of extending the algorithm for the unweighted case
to the weighted case. This would perhaps involve finding particular alternating cycles that do not increase
the overall cost. Investigation of this is left to future work.

11

References

[1] Dinitz, Yefim, Naveen Garg, and Michel X. Goemans. “On the single-source unsplittable flow problem.”
Combinatorica 19.1 (1999): 17-41.

[2] Shmoys, David B., and Éva Tardos. “An approximation algorithm for the generalized assignment prob-
lem.” Mathematical Programming 62.1-3 (1993): 461-474.

[3] Martens, Maren, Fernanda Salazar, and Martin Skutella. “Convex combinations of single source unsplit-
table flows.” Algorithms-ESA 2007. Springer Berlin Heidelberg, 2007. 395-406.

12

