
Greedy Maximization of Submodular Functions

David Rolnick & Jonathan Weed

December 12, 2014

1 Introduction

Traditional optimization techniques often rely upon functions that are convex or
at least locally convex. Such diverse methods as gradient descent, loopy belief
propagation, and linear programming all rely upon convex functions. However,
many natural functions are not convex, yet optimizing over them is both possible
and necessary. The class of submodular functions is particularly well-behaved
and applicable. Submodularity may be thought of as a discrete analogue of
convexity for set-functions (that is, functions defined on sets).

Minimizing convex functions is generally easy, while maximizing them is
generally computationally hard. The same is true of submodular functions,
which admit strongly polynomial-time minimization algorithms but which can-
not generally be maximized efficiently. An example of this phenomenon, which
we explore in some detail below, is the well-known difference between the prob-
lems of finding a minimum cut and finding a maximum cut in a graph. Minimum
cuts can be found by any efficient maximum-flow algorithm, whereas finding a
maximum cut is generally NP-hard.

In this paper, we describe two “greedy” approaches to the problem of sub-
modular maximization. As we will show below, maximizing a submodular func-
tion is provably hard in a strong sense; nevertheless, simple greedy algorithms
provide approximations to optimal solutions in many cases of practical signif-
icance. We first restrict ourselves to the problem of maximizing a monotone
submodular function subject to a natural constraint. Here, a näıve greedy
algorithm finds a good approximation but is inefficient. We present a recent im-
provement of the greedy algorithm with a much better asymptotic running time
due to Badanidiyuru and Vondrák [1]. We then consider general submodular
maximization. A näıve greedy algorithm is ineffective in this case, but we will
present a new algorithm due to Buchbinder et al. [2] that combines two greedy
algorithms to achieve a (1/2)-approximation guarantee. We end by considering
open problems in this area and briefly surveying some recent trends in the field.

1



1.1 Preliminaries

A set-function f : 2X → R+ is said to be submodular if for every A,B ⊆ X,
the following property holds:

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B). (1.1)

For convenience, we also assume that f(∅) = 0.
For any subset A ⊆ X, we can define a “marginal” function fA : 2X → R+

by the rule fA(x) = f(A∪{x})−f(A). Then Equation (1.1) implies the following
alternate characterization: a function f is submodular if

fA(x) ≤ fB(x) for all B ⊂ A and x /∈ A. (1.2)

In fact, Equation (1.2) is equivalent to Equation (1.1) for the purposes of
defining submodularity. Equation (1.2) may be thought of a “law of dimin-
ishing returns”: As a set grows, the advantage of adding new elements drops.
Accordingly submodular functions have applications in economics, as well as
mathematics, physics, and engineering.

In many case, submodular functions arise because a problem secretly involves
matroids. A matroid M is a pair (X, I), where X is a ground set and I a
collection of subsets of X, with the following properties:

1. the empty set is contained in I,

2. if A ∈ I and B ⊂ A then B ∈ I,

3. (Exchange Property) if A ∈ I and B ∈ I with |A| > |B|, then there exists
a ∈ A \B such that B ∪ {a} ∈ I.

The elements of I are called independent sets by analogy to independent
sets of vectors, which indeed motivate the definition of a matroid. Note that the
Exchange Property holds for independent sets of vectors, since any independent
set may be enlarged until its cardinality equals the dimension of the space, which
is indeed the maximum cardinality across independent sets. The Exchange
Property implies that all maximal independent sets have the same size, which
is called the rank of the matroid.

Let M be a matroid over some ground set X. The rank function r of M is
defined over all subsets S ⊆ X by the rule that r(S) = max(|A| | A ∈ I, A ⊆ S)
equals the maximum cardinality of any independent set contained in S. Thus
the rank of the matroid M equals r(X). It may readily be shown, using the
Exchange Property, that the rank function of a matroid is submodular, and this
is in some ways the canonical example of a submodular function.

1.2 Examples of submodular functions

Directed cuts

Suppose we are given a directed graph G = (V,E). For each subset A ⊆ V ,
define f(A) to be the number of edges running from A to V \A. We claim

2



that f is a submodular function. Consider two subsets A,B ⊆ V , and refer to
f(A∪B) + f(A∩B) and f(A) + f(B) as LHS and RHS, respectively. We must
then prove that LHS ≤ RHS.

Consider an edge e ∈ E. If the source of e is in neither A nor B, then e is not
counted in LHS or RHS. If e runs from A to B or vice versa, then it is counted
once in f(A) or f(B) and at most once in f(A∩B); it therefore increases RHS
at least as much as LHS. If e runs from A or B to V \(A∪B), then e is counted
twice in LHS and RHS if the head of e is in A∩B and is otherwise counted once
in LHS and RHS. We conclude that LHS ≤ RHS and so f is indeed submodular.

Facility location

Recall the problem of facility location, which was considered during this course.
We are given a set X of facilities and a set Y of clients. We wish to build some
number of facilities and connect each client to exactly one of the facilities that
has been opened. For every i ∈ X, there exists a cost fi associated with opening
facility i. For each facility-client pair (i, j), where i ∈ X and j ∈ Y , there exists
a benefit cij associated with pairing client j with facility i.

Define a function f : 2X → R+ by setting f(A) =
∑
i∈A fi for each A ⊆ X.

Thus, f gives the total cost of opening a set of facilities. Also define a function
g : 2X → R+ by setting g(A) =

∑
j∈Y maxi∈A cij . Thus, g gives the total

benefit of opening a set of facilities. We wish to maximize g − f ; we claim that
this function is submodular.

Observe first that −f is submodular. This is because, for every A,B ⊆ X,
we have

−f(A ∪B)− f(A ∩B) = −f(A)− f(B).

Now, we show that g is submodular. Let gj(A) = maxi∈A cij . Observe that

gj(A ∪B) = max(gj(A), gj(B))

gj(A ∩B) ≤ min(gj(A), gj(B)),

from which it follows that gj is submodular. It is simple to verify that the sum of
submodular functions is itself submodular; therefore, g =

∑
j gj is submodular,

as is g − f . The problem of facility location thus reduces to maximizing the
submodular function g − f .

1.3 Minimizing a submodular function

We remarked above that minimizing a submodular function is computationally
tractable. One way to find a minimum is to extend a submodular function to
a continuous function defined on the unit hypercube. This extension, due to
Lovász, has two properties that make it particularly useful, both of which are
established in [7].

First, it is convex. Finding the minimum of a convex function over the
hypercube is straightforward; an algorithm is given in Grötschel, Lovász, and

3



Schrijver [5]. This algorithm proceeds by a version of the ellipsoid method and
therefore takes polynomial time, though it is slow to implement in practice.

Second, the extension achieves its minima at the vertices of the hypercube, so
optimizing the Lovász extension yields an optimum of the original submodular
function automatically, without the use of any rounding procedure.

The Lovász extension therefore gives a polynomial-time algorithm for min-
imizing submodular functions. In fact, there are purely combinatorial algo-
rithms, which, while somewhat more complicated, solve the problem in strongly
polynomial time.

2 Maximizing monotone submodular functions
subject to a cardinality constraint

Before turning to the general problem of submodular maximization, we will
focus on a special case. In this section, we consider a natural class of submodular
functions: those that are monotone—that is, functions f for which f(A) ≤ f(B)
whenever A ⊆ B. It is clearly trivial to maximize a monotone submodular
function that is defined on all subsets of the ground set X; we simply take the
entirety of X. Therefore, we suppose that our submodular function is defined
only on certain subsets of X. The simplest such constraint is a cardinality
constraint, where we restrict our attention to subsets of size at most k, and we
consider this case here.

The problem of maximizing a monotone submodular function under such a
constraint is still NP-hard since it captures such well-known NP-hard problems
as Minimum Vertex Cover, in which we are given an undirected graph G =
(V,E) and must find a minimum-cardinality set of vertices such that every edge
is incident to at least one of our vertices. To see this, first note that Minimum
Vertex Cover reduces to determining, for each k, whether there exists a set of
at most k vertices that forms a vertex cover.

Define a function f : 2V → R+ by setting f(A) equal to the total number of
edges incident to vertices in A. Now, f is submodular, because for A,B ∈ 2E ,
f(A) + f(B) equals the number f(A ∪ B) of edges incident to A or B, plus
the number of edges incident to both A and B—this latter number is at least
f(A ∩B). Thus, there exists a vertex cover with at most k vertices if and only
if |E| is the maximum of f over subsets of size at most k. We conclude that it
is NP-hard to maximize f subject to this cardinality constraint.

A simple greedy algorithm nevertheless gives a (1 − 1/e)-approximation to
the problem of maximizing a monotone submodular function subject to a car-
dinality constraint. We begin by analyzing the algorithm and then show how
to implement it efficiently using a “threshold algorithm.”

2.1 The greedy algorithm

The greedy algorithm finds a solution B ⊂ X in successive stages by selecting
the element x ∈ X at each stage that increases f the most. More formally, if Bi

4



is the subset selected after the ith step, then we let Bi+1 = Bi ∪ {xi+1}, where
xi+1 6∈ Bi maximizes the marginal function fBi(x) = f(Bi ∪ {x})− f(Bi).

Equation (1.2) implies that the marginal values f∅(x1), fB1
(x2), . . . form

a nonincreasing sequence. Proving that the greedy algorithm provides the
claimed approximation involves showing that this sequence does not decrease
too quickly—in fact, that it is bounded below by a constant factor times the
difference between the current solution and the optimum.

Proposition 2.1 (Nemhauser et al. [9]). Let (Bi)
k
i=0 be a sequence of sets

defined greedily as above, and let O be the set of size k such that f(O) is as
large as possible. Then

f(Bk) ≥ (1− 1/e)f(O). (2.1)

Proof. We will first show that the marginal increase at every stage is not too
small. Our goal will be to establish that

f(Bi+1)− f(Bi) ≥
1

k
(f(O)− f(Bi)) (2.2)

for all nonnegative i ≤ k. The f(Bi+1) − f(Bi) on the left-hand side of Equa-
tion (2.2) is the increase corresponding to the addition of element xi+1 to the
set. Equation (2.2) establishes that if this increase is small, then the value of
f(Bi) is close to optimal.

The proof of Equation (2.2) relies on the following idea: whenever we choose
not to include an element of O in some set Bi, it is because the marginal value
of the elements of O is small, so f(O) cannot be much larger than f(Bi).

We make this rigorous as follows. We arbitrarily label the elements of O =
{o1, . . . , ok} and consider adding them one at a time. For all i, we have by
monotonicity

f(O) ≤ f(O∪Bi) = f(Bi)+

k∑
j=1

[f(Bi ∪ {o1, . . . , oj})− f(Bi ∪ {o1, . . . , oj−1})] .

We can write each term f(Bi ∪ {o1, . . . , oj}) − f(Bi ∪ {o1, . . . , oj−1}) as
fBi∪{o1,...,oj−1}(oj). Now fBi∪{o1,...,oj−1}(oj) ≤ fBi

(oj) by Equation (1.2). So

f(O) ≤ f(Bi) +

k∑
j=1

fBi
(oj) ≤ f(Bi) + kfBi

(xi+1),

since xi+1 is the element of highest marginal value. Then Equation (2.2) follows.
To prove Equation (2.1), we rewrite Equation (2.2) as

[f(O)− f(Bi)]− [f(O)− f(Bi+1)] ≥ 1

k
(f(O)− f(Bi))

and rearrange to yield

f(O)− f(Bi+1) ≤
(

1− 1

k

)
(f(O)− f(Bi)).

5



Since f(BO) = f(∅) = 0, induction on i yields

f(O)− f(Bk) ≤
(

1− 1

k

)k
f(O) ≤ e−1f(O),

and Equation (2.1) follows.

Proposition 2.1 first appeared in a paper by Nemhauser, Wolsey, and Fisher,
and Nemhauser and Wolsey subsequently showed in [8] that the approximation
ratio (1− 1/e) is optimal if the algorithm can only evaluate f on polynomially
many inputs.

2.2 Implementing the greedy algorithm

The greedy algorithm is both conceptually simple and provably optimal, which
makes it a natural candidate for use in practice. A näıve implementation requires
O(kn) time, since one element is added to B at each step and each step requires
checking the function on n different inputs. In [1], Badanidiyuru and Vondrák
show how a lazy threshold algorithm can achieve a (1 − 1/e − ε)-approxim-
ation in O(nε log n

ε ) time. This algorithm is also simple to implement and offers
significant speedup when k is large.

The threshold algorithm is so named because at each stage it adds all ele-
ments that are “good enough,” that is, whose marginal values are greater than a
certain threshold. We noted earlier that the marginal values of new elements de-
crease monotonically as the greedy algorithm progresses; likewise, the threshold
in the lazy implementation continues to decrease until a predetermined lower
bound is reached. Even though the choices at each step are no longer optimal,
we can still recover an almost optimal approximation.

The speedup arises for two reasons. The first is that we add multiple elements
at each step, so we do not need k iterations to build the setB. The second is that,
as in many approximation algorithms, we ignore elements whose contribution is
so small that they will not affect the solution up to a factor of ε. In our case, we
stop our algorithm when the threshold reaches a value below which additional
elments will not significantly improve the quality of the approximation, thereby
ensuring that the total number of iterations of the algorithm is small.

Initially, the value of the threshold is set to b = maxx∈X f({x}). Due to
the law of diminishing returns for submodular functions, fT (x) ≤ b for all sets
T ⊆ X and elements x ∈ X. We begin with an empty set T0 and at each
stage choose a new element to add to the current set if its marginal value to the
current set is greater than the threshold. When no element meets this criterion,
we shrink the threshold by a factor of (1−ε), stopping when it equals εb/n. Any
elements whose marginal value is less than εb/n would contribute a total of at
most εb to the value of our solution, so we ignore them. Note that in some cases
the threshold algorithm will terminate before it adds k elements to the set B.

We have the following proposition.

6



Proposition 2.2 (Badanidiyuru and Vondrák [1]). Let (Ti)
k
i=0 be the sequence

of subsets produced by the threshold algorithm, and let O be defined as in Propo-
sition 2.1. Then

f(Ti+1)− f(Ti) ≥
(1− ε)
k

(f(O)− f(Ti)). (2.3)

Note that Equation (2.3) immediately implies that the threshold algorithm
yields a (1 − 1/e − ε)-approximation by the same inductive argument used in
the proof of Proposition 2.1. Indeed, Equation (2.3) is an exact analogue of
Equation (2.2), and both equations can be proved in a similar fashion. The
proof of Equation (2.2) relied on using the greedy choice to bound the marginal
value of all other elements. In the case of the threshold algorithm, we cannot
guarantee that our choice at each stage matches the choice the greedy algorithm
would have made. However, because the threshold value changes only slightly
from step to step, we can say that the marginal value of elements we add at
each step is at most a (1− ε) factor away from the value of the greedy choice.

Proof of Proposition 2.2. As in the proof of Proposition 2.1, we order the ele-
ments of O arbitrarily and have by monotonicity that

f(O) ≤ f(O ∪ Ti) = f(Ti) +

k∑
j=1

(f(Ti ∪ {o1, . . . , oj})− f(Ti ∪ {o1, . . . , oj−1})

≤ f(Ti) +

k∑
j=1

fTi
(oj),

where as in Proposition 2.1 the final inequality follows from submodularity.
Note that if oj ∈ Ti, then fTi

(oj) = 0, so in fact we have

f(O) ≤ f(Ti) +
∑

o∈O\Ti

fTi(o). (2.4)

Denote by yi+1 the element added by the threshold algorithm to the set Ti,
and suppose that the current threshold at that time is t. If o /∈ Ti, then in
particular o did not meet the threshold at the previous stage of the algorithm,
so its marginal value is at most t/(1−ε). On the other hand, the marginal value
of yi+1 is at least t. We therefore have fTi(o) ≤ fTi(yi+1)/(1−ε). Equation (2.4)
then yields

f(O) ≤ f(Ti) + (1− ε)−1
∑

o∈O\Ti

fTi
(yi+1) ≤ f(Ti) + (1− ε)−1kfTi

(yi+1).

Since fTi(yi+1) = f(Ti+1)− f(Ti), the claim follows.

The threshold algorithm therefore produces an approximation guarantee
comparable with that of the greedy algorithm. Moreover, since the thresh-
old algorithm only requires O(log1−ε(ε/n)) = O( 1

ε log(n/ε)) iterations, it has an

7



x1

x2

x3

Figure 1: Dashed edges have weight ε, while the other edge has weight 1.

asymptotically better running time. In fact, the greedy algorithm and threshold
algorithm often perform much better than their provable approximation bounds
would suggest. In the conclusion, we briefly describe related work which seeks
to quantify this puzzling phenomenon.

3 General submodular maximization

We now turn to the more difficult problem of maximizing a general submodular
function. Like maximizing monotone submodular functions, maximizing a gen-
eral submodular function is also NP-hard. Recall our example in Section 1.2,
in which we reduced the NP-hard problem of finding a maximum cut to that
of maximizing a submodular function. In fact, it has been shown by Lovász [6]
that finding the exact maximum of a submodular function takes an exponential
amount of time, even without the assumption that P 6= NP.

A näıve greedy algorithm is not effective in the general case, since it is pos-
sible to construct examples where adding elements greedily performs arbitrarily
poorly. Nevertheless, a type of greedy algorithm can find a constant-factor ap-
proximation in the general case. We present the approach of Buchbinder et
al. [2], who derive a simple deterministic (1/3)-approximation algorithm, which
is strengthened to a (1/2)-approximation using randomization. These algo-
rithms are easy to implement and run in linear time.

Suppose throughout that we are working with a submodular function f
defined on subsets of a ground set X. We will further assume that the elements
of X are ordered: x1, x2, . . . , xn.

We might suppose that we can greedily maximize f as follows: We maintain a
set A, initially empty, that increases in size; for each element xi ∈ X in turn, we
add xi to A if doing so increases f(A). Finally we output A. This algorithm does
not yield a constant-factor approximation. For example, consider the problem
Directed Max-Cut. Recall from Section 1.2 that the function that gives the
value of a directed cut is submodular. The maximum directed cut of the graph
in Figure 1 has value 1, but a greedy algorithm that considers the vertices in the
order x1, x2, x3 finds a cut of value ε. This greedy algorithm therefore performs
arbitrarily poorly in the general case.

Another approach proceeds in the opposite direction: We maintain a set B,
initially equal to X, that decreases in size; for each element xi ∈ X in turn,

8



x1

x2 x3

x4 x5

Figure 2: The dashed edges have weighted 1−ε and the other edges have weight
1. In this graph, the deterministic algorithm in Buchbinder et al. [2] achieves a
1/3 + O(ε) approximation. The algorithm finds a directed cut {x2, x3, x4, x5}
of value 2 whereas the maximum cut {x1, x4, x5} has value 6 − 2ε. Note that
the vertices x1, x2, x3, x4, x5 are considered by the algorithm in that order.

we remove xi from B if doing so increases f(B). Finally we output B. This
“reverse greedy” algorithm also fails, and for similar reasons: if we consider the
vertices of Figure 1 in the order x3, x2, x1, we again produce a cut of weight ε.

Surprisingly, adopting both approaches at once yields an effective algorithm.

3.1 (1/3)-Approximation.

Our first algorithm proceeds deterministically as follows. We maintain both a
set A and a set B, with A initialized to ∅ and B initialized to X. For each
element xi ∈ X in turn, we either add xi to A or remove xi from B. Thus, after
the ith step, A and B agree on the elements x1, x2, . . . , xi, and finally converge
to the same set, which is our output. In order to determine whether to add xi
to A or remove it from B, we evaluate

ai = f(A ∪ {xi})− f(A)

bi = f(B\{xi})− f(B).

We add xi to A if ai ≥ bi (the benefit from including xi is greater than the
benefit of taking it away), and otherwise we remove xi from B.

Theorem 3.1 (Buchbinder et al. [2]). This algorithm yields a (1/3)-approxi-
mation.

Before outlining the proof of this theorem, we note that the example shown
in Figure 2 shows the analysis is tight, where again we consider the special case
of finding a maximum cut in a directed graph. In the case of the graph shown,
the algorithm yields a cut {x2, x3, x4, x5} of value 2 while the maximum value
for a cut is 6− 2ε, given by {x1, x4, x5}.

9



Proof outline for Theorem 3.1. Let Ai be the state of set A after we have con-
sidered the vertices x1, . . . , xi. Define Bi likewise. Thus, Ai equals Ai−1 or
Ai−1 ∪ {xi} and Bi equals Bi−1 or Bi−1\{xi}. Let O ⊆ X be a vertex set for
which the submodular function f(O) is maximized. Let Oi = (O ∪ Ai) ∩ Bi;
hence Oi agrees with Ai and Bi on the elements x1, . . . , xi and agrees with O
on xi+1, . . . , xn.

Lemma 3.2. For each i, we have

f(Oi−1)− f(Oi) ≤ (f(Ai)− f(Ai−1)) + (f(Bi)− f(Bi−1)) . (3.1)

The proof of this lemma proceeds routinely by manipulating the definition of
submodularity and considering the procedure by which Ai and Bi are updated.
Once the lemma is proven, the theorem follows by summing Equation 3.1 from
i = 0 to n; the summands “telescope” to give:

f(O0)− f(On) ≤ (f(An)− f(A0)) + (f(Bn)− f(B0)) .

Note that

A0 = ∅, B0 = X, O0 = O, An = Bn = On.

Hence, our inequality simplifies to

f(O) ≤ 3f(An),

which proves that the algorithm gives a (1/3)-approximation ratio.

3.2 (1/2)-Approximation.

The above algorithm can be strengthened by including the following element
of randomness. At the ith step, we decide randomly whether to include xi in
A or remove it from B. If ai, bi > 0, then we add xi to A with probability
ai/(ai + bi), and remove it from B with probability bi/(ai + bi). If ai > 0 and
bi ≤ 0, then we add xi to A; likewise if bi > 0 and ai ≤ 0, then we remove
xi from B. Otherwise, then we decide to include xi in A; the same result is
obtained if we decide to remove xi from B.

Theorem 3.3 (Buchbinder et al. [2]). This algorithm yields a (1/2)-approxi-
mation.

Proof outline. Define Ai, Bi, O, Oi as in the deterministic algorithm. The key
observation in the proof is that Lemma 3.2 can be replaced by a stronger version:

Lemma 3.4. For each i, we have

2 · E[f(Oi−1)− f(Oi)]

≤ E [f(Ai)− f(Ai−1)] + E [f(Bi)− f(Bi−1)] . (3.2)

10



From this lemma, the proof of Theorem 3.3 proceeds by a telecoping sum,
as in the proof of Theorem 3.1. To prove the lemma, we divide into cases based
on the signs of ai and bi. For simplicity, we present only the case of ai, bi ≥ 0,
which is also the most interesting.

Observe that

E [f(Ai)− f(Ai−1)] + E [f(Bi)− f(Bi−1)]

=
ai

ai + bi
[f(Ai−1 ∪ {xi})− f(Ai−1)] +

bi
ai + bi

[f(Bi−1\{xi})− f(Bi−1)]

=
a2i + b2i
ai + bi

.

On the other side of Equation (3.2), we can use submodularity to show that

2 · E[f(Oi−1)− f(Oi)]

= 2
ai

ai + bi
E [f(Oi−1)− f(Oi−1 ∪ {xi})]

+ 2
bi

ai + bi
E [f(Oi−1)− f(Oi−1\{xi})]

≤ 2aibi
ai + bi

.

The intuition for this expression is that either

f(Oi−1)− f(Oi−1 ∪ {xi}) = 0 and

f(Oi−1)− f(Oi−1\{xi}) = ai,

or else

f(Oi−1)− f(Oi−1 ∪ {xi}) = bi and

f(Oi−1)− f(Oi−1\{xi}) = 0.

Equation 3.2 now follows from since

2aibi
ai + bi

≤ a2i + b2i
ai + bi

.

(This inequality reduces to (ai − bi)2 ≥ 0.) This completes our proof of the
lemma, and Theorem 3.3 follows.

3.3 Improvements to the algorithm

This (1/2)-approximation cannot be strengthened in the general case, as a result
by Feige et al. [4] proves that any (1/2 + ε)-approximation must require expo-
nentially many queries to the submodular function. However, stronger results
may be possible for special problems of submodular optimization. Buchbinder
et al. present a (3/4)-approximation algorithm for the problems of Submodular

11



Max-SAT and Submodular Welfare, which we do not define here. One of the in-
gredients in this improvement is a randomization of the order in which elements
of X are considered.

We have considered improvements to the algorithm for the problem of Di-
rected Max-Cut. Figure 2 shows that the analysis is tight for (1/3)-approxima-
tion, but this example relies on the vertices having been given in a particular
order. If we randomize the order of the elements of X, we believe that much
stronger results can be achieved in practice. Pathological orderings like the one
in Figure 2 seem to be quite unlikely. Indeed, our data indicates that for arbi-
trary graphs, applying the algorithm in Section 3 to a graph whose vertices are
given in a random order yields solutions which are very nearly optimal. Once
again, we note the practical efficacy of greedy approaches above and beyond
their provable approximation guarantees.

4 Conclusion

Maximizing submodular functions is a problem with a great deal of theoreti-
cal and practical significance. Most modern approaches are “greedy” to some
extent, in that they recover global approximation guarantees from optimal lo-
cal choices. The algorithms we have considered in this paper improve upon the
näıve approach by carefully specifying how these optimal local choices are made.

In this paper, we have focused on purely combinatorial algorithms, but an-
other strain of recent work, launched by Calinescu et al. in [3], focuses on con-
tinuous maximization algorithms. These algorithms are also essentially greedy.
In fact, an algorithm in [1] is controlled by a parameter δ, which smoothly in-
terpolates between the combinatorial greedy algorithm when δ = 1 and a fully
continuous greedy algorithm when δ = 0. For all its simplicity, the greedy
approach still forms the foundation of modern techniques.

Though many of the bounds we have presented are provably tight, it is worth
noting that the algorithms we have discussed often perform substantially better
in practice. For instance, as mentioned in Section 3, randomization alone can
improve performance significantly on realistic data, and refined algorithms can
improve the approximation ratio significantly in special cases such as Submodu-
lar Max-SAT and Submodular Welfare. Recent work (see, for instance, [10]) at-
tempts to quantify such phenomena by adopting additional assumptions about
the submodular functions in question, such as that they are symmetric or of
bounded curvature. This seems a promising avenue for future work.

References

[1] A. Badanidiyuru and J. Vondrák, Fast algorithms for maximizing submodular functions,
SODA (2014).

[2] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz, A tight linear time (1/2)-
approximation for unconstrained submodular maximization, 2012 IEEE 53rd Annu.
Symp. Found. Comput. Sci. (October 2012), 649–658.

12



[3] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, Maximizing a monotone submodular
function subject to a matroid constraint, SIAM J. Comput. (2011), 1–28.

[4] U. Feige, V.S. Mirrokni, and J. Vondrák, Maximizing non-monotone submodular func-
tions, SIAM J. Comput. (2011).

[5] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica 1 (1981), no. 2, 169–197.

[6] L. Lovász, The matroid matching problem, Algebraic methods in graph theory, 1981,
pp. 495–517.

[7] , Submodular functions and convexity, Math. program. state art, 1983, pp. 235–
257.

[8] G.L. Nemhauser and L.A. Wolsey, Best algorithms for approximating the maximum of a
submodular set function, Mathematics of operations research 3 (1978), no. 3, 177–188.

[9] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher, An analysis of approximations for max-
imizing submodular set functionsi, Mathematical Programming 14 (1978), no. 1, 265–
294.

[10] M. Sviridenko, J. Vondrák, and J. Ward, Optimal approximation for submodular and
supermodular optimization with bounded curvature (2014), 1–15.

13


	Introduction
	Preliminaries
	Examples of submodular functions
	Minimizing a submodular function

	Maximizing monotone submodular functions subject to a cardinality constraint
	The greedy algorithm
	Implementing the greedy algorithm

	General submodular maximization
	(1/3)-Approximation.
	(1/2)-Approximation.
	Improvements to the algorithm

	Conclusion

