
A Survey of Spectral Sparsification
6.854 Final Project

Robi Bhattacharjee∗

Victor Pontis†

December 11, 2013

Abstract

A spectral sparsification algorithm takes an input graph and returns a new graph
with fewer edges that preserves, up to an approximation, a term called the Laplacian
of the graph. The Laplacian of the graph relates to the connectivity of the graph and is
a strong property: graphs with similar Laplacians also have similar cut values, similar
connectivities, and other important properties.

In this paper we give an introduction to spectral graph theory and sparsification.
We describe two sampling algorithms: one that considers vertex degree and the other
effective resistance, giving intuition behind both algorithms. We also provide the nec-
essary background knowledge, including material in linear algebra and effective resis-
tance, needed for analysis of the algorithms presented. We finish by commenting on
the inherently linear algebraic properties of spectral sparsification and the difficulty of
finding a purely combinatorial analysis.

Contents

1 Background 2

2 Sampling by Vertex Degree 4

3 Sampling by Effective Resistance 7

4 Comparing the Algorithms 10

5 Linear Algebra vs Combinatorics 11

6 Conclusion 12

∗Massachusetts Institute of Technology - robibhat@mit.edu
†Massachusetts Institute of Technology - vpontis@mit.edu

1

1 Background

1.1 Spectral Sparsification

In a sparse graph the number of edges is on the order of the number of vertices (up to
a logarithmic factor). A sparsification algorithm takes an input graph and returns a
sparse graph that is an approximation of the input graph. The output sparse graph has
Õ(n) edges when a complete graph can have up to O(n2) edges.1 Benczur and Karger
introduced the notion of sparsifiers in [BK96] with the definition of cut sparsifiers.
They defined a class of sparsification algorithms called cut sparsifiers which return a
cut approximation, a sparse graph that approximately preserves the cut between any
two sets of vertices. They used their sparsification algorithm to improve runtimes on
min-cut and max-flow.

In this paper we will be studying spectral sparsification algorithms which return
spectral approximations.2 Spectral approximation can be thought of as a generalization
of cut approximation that preserves a term called the Laplacian, LG, of a graph G as
defined here

LG(u, v) =

{
−w(u,v) if u 6= v∑

z w(u,z) if u = v.
(1)

We can also write the Laplacian in its quadratic form

xTLGx =
∑

w(u,v)(xu − xv)2. (2)

From this quadratic form of the Laplacian we see the that spectral sparsification is
a generalization of cut sparsification. Consider any set S ⊂ V and let xS be the vector
defined as x(u) = 1 if u ∈ S, and x(u) = 0 otherwise. Then it is clear that xTSLGx is
just equal to the sum of the weights of the edges that span S to V − S.3 This shows
that spectral sparsifiers are at least as strong as cut sparsifiers (they are in fact strictly
stronger, but this requires more analysis).

For the formal definition of spectral approximation, we let G̃ be a graph with the
same vertices as G. G̃ is said to be a (1 + ε)-spectral approximation if for all x

(1− ε)xTLGx ≤ xTLG̃x ≤ (1 + ε)xTLGx. (3)

1.2 Linear Algebra Background

In this section, we go over some linear algebra that will be useful for the analysis of
graphs and sparsification algorithms.

The spectral theorem for Hermitian operators in linear algebra states that for any
symmetric matrix, all of its eigenvalues are real and that its eigenvectors can be chosen

1For this paper we are only considering sparsification algorithms that return graphs with Õ(n) edges. In
general, a sparsification algorithm can return a graph with more edges but with the key property that it has
less edges than the input graph. We are also only considering connected graphs. If given a graph that is not
connected we can split it into connected components.

2We also restrict our study to sparsification algorithms where the edges in G̃ are a subset of the edges in
G. So our sparsification algorithms simply reweigh edges of G.

3In the future we will refer to the edges that cross the cut between V and V − S as E(S, V − S).

2

to form an orthonormal basis of its domain. This theorem is central to our analysis of
spectral sparsification.

In addition to the spectral theorem, we also use a list of basic linear algebra facts
and notation listed below.

1. If a symmetric matrix has orthonormal eigenvectors x1, x2, ..., xn with eigenvalues
0 = λ1 < λ2 < · · · < λn then for all x 6= 0, λ1 ≤ xTAx

xT x
≤ λn.

2. For a given matrix M we use λi(M) to denote the ith smallest magnitude eigen-
value. This definition will only be applied to matrices with real eigenvalues.

3. The 2-norm of a symmetric matrix ||A|| is equal to the absolute value of its largest
eigenvalue.

1.3 Graph Conductance

The conductance of a graph measures the connectivity of the graph.4 The conductance
of a cut considers the number of edges on both sides of the cut and the number of
crossing edges. A graph cut will have low conductance if there are a lot of edges on
either side but few crossing edges. We define the volume of a set S of vertices such
that Vol(S) =

∑
i∈S di where dv denotes the degree of vertex v. Now we can define the

conductance of a cut dividing a graph into two disjoint sets S and V − S:

ΦG(S) =
|E(S, V − S)|

min(Vol(S),Vol(V − S))
. (4)

The conductance of the graph G takes the minimum ΦG(S) over all S so that

ΦG = min
∅6=S⊂V

ΦG(S). (5)

A graph with high conductance has high connectivity and it is hard to partition
off a set of vertices from the rest of the graph. On the other hand, a graph with low
conductance has low connectivity and we are able to partition the graph into disjoint
sets where the boundary between the sets is small.

Conductance is also closely related to the Laplacian of a graph as we show in
Cheeger’s Inequality below. Before describing this, we first define the normalized
Laplacian. The normalized Laplacian is the matrix

LG = D−1/2LGD
−1/2 (6)

where D is the diagonal matrix defined by D(u, v) = 0 if u 6= v and D(v, v) = dv. The
normalized Laplacian of a graph satisfies a similar equation to (2):

xTLGx =
∑

(u,v)∈E

(
xu√
du
− xv√

dv

)2

. (7)

4Our definition of conductance only applies to unweighted graphs.

3

2 Sampling by Vertex Degree

2.1 Cheeger’s Inequality

Cheeger’s Inequality connects the conductance ΦG with λ2(L). This allows us to an-
alyze the eigenvalues of the normalized Laplacian in place of conductance. It states
that

Theorem 1. 2ΦG ≥ λ2(L) ≥ Φ2
G/2.

Proof. We first prove that λ2(L) ≥ Φ2
G/2. The full proof of this is quite involved,

so we’ll only give a sketch. The basic idea is to start with the eigenvector x such
that Lx = λ2x. Then, sort the vertices v based on the magnitude of x(v) to get
x(v1) ≤ x(v2) ≤ · · · ≤ x(vn). The idea then becomes to show that we can find i such
that λ2 ≥ Φ2

Si
/2 where Si = {v1, v2, · · · , vi}. The intuition behind this is somewhat

analogous to the proof of the other direction in the inequality. Consider any set Si.
Intuitively, edges that span from Si to V − Si are expected to have a larger value of
(xv√

dv
− xu√

du
)2 than edges that stay contained within Si or V − Si. So the idea of the

proof is that if there are many edges from Si to V − Si, then the Laplacian will be
large. Of course, this isn’t necessarily true for any one value of Si, but over the group
of them, it can be shown that this idea works. Interested readers can see [Chu07] for
the full proof.

For the other side of the inequality, we’ll provide a more full proof. The main
intuition behind the proof is that if you have a set S such that ΦG(S) is very small,

then you can create a vector x for which xTLx
xx is also small. This is done by making the

values of x(v) where v ∈ S large and positive, and the values of x(v) where v ∈ V − S
negative. We now formalize this intuition.

First, consider the set S such that ΦG(S) = ΦG and such that Vol(S) ≤ Vol(V −S).
Let e, f > 0 be positive real numbers that will be specified later. Then let x denote
the vector defined by

x(v) =

{
e
√
dv if v ∈ S

−f
√
dv if v /∈ S.

Then it follows from (7) that

xTLx
xTx

=
(e+ f)2|E(S, V − S)|

e2Vol(S) + f2Vol(V − S)
.

We now select e, f such that
∑

v∈S edv =
∑

v∈V−S fdv. This implies that x is
orthogonal to the vector y defined by y(v) =

√
dv. Therefore, we must have that

λ2(L) ≤ xTLx
xT x

since y can easily be verified to be the vector with eigenvalue 0 with
respect to L.5 However, we have that

λ2(L) ≤ xTLx
xTx

=
(e+ f)2|E(S, V − S)|

(e+ f)eVol(S)
=

(e+ f)ΦG

e
≤ 2ΦG (8)

by substituting that eVol(S) = fVol(V −S) and by using the fact that since Vol(S) ≤
Vol(V − S), e ≥ f . This gives us what we wanted and we are done.

5We use the variational theorem to state that xTMx
xT x

is greater than the first positive eigenvalue if x is
orthogonal to the smallest eigenvector of M and all of the eigenvalues are real and greater or equal to zero.

4

2.2 Algorithm

In this section we present an algorithm for generating a (1 + ε)-spectral approximation
of an unweighted graph by sampling with probability proportional to vertex degree.
Instead of providing the entire algorithm, we focus on the portion that we feel is most
relevant. We define a sub-routine Sample which creates a spectral sparsifier of G only
if G has high conductivity (and consequently a high second eigenvalue by Cheeger’s
Inequality). The full algorithm works by partitioning the the input graph into sections
of high conductivity and then applying the sampling routine. The rest of this section
just concerns the sampling routine.

We define Sample(G, ε, λ) where G is a graph with λ2(LG) ≥ λ, and ε is a real num-
ber between 0 and 1/2 to be the following routine: select each edge e with probability
pe and add selected edges to the output graph with weight 1/pe.

Theorem 2 (Sampling by degree). Suppose we run Sample(G, ε, λ) such that

∀(u, v) ∈ E. pe = min(1, C/min(du, dv)) where C = Θ((log n)2(ελ)−2)

and get an output graph G̃. With probability of at least 1/2 G̃ is a (1 + ε)-spectral
approximation of G with an average degree of O((log n)2(ελ)−2).

This theorem from [BSST13] shows that the number of edges that we need to sample
to get a spectral approximation will depend on the connectivity of the graph due to
the λ−2 term included in pe with low connectivity graphs needing more edges.

2.3 Analysis

At a very high level, the basic idea of the proof of Theorem 2 is to prove that

1. G̃ is NOT a (1 + ε) approximation of G with probability at most 1/3.

2. G̃ has more than O
(
(logn)2

ε2λ2

)
edges with probability at most 1/6.

Since P (A ∪B) ≤ P (A) + P (B), the probability that G̃ doesn’t satisfy the desired
properties would be at most 1/2 meaning that it works with probability at least 1/2.
We now show how to obtain the two claims above.

Lemma 3. Let L̃ denote the Laplacian of G̃. Then if ||D−1/2(L − L̃)D−1/2|| ≤ δ, G̃
is a (1 + ε)-spectral-approximation of G where ε = δ

λ2
.6

Proof. This lemma is quite simple to prove with some basic linear algebra. The basic
idea is that

D−1/2L̃D−1/2 = D−1/2LD−1/2 +D−1/2(L̃− L)D−1/2

means that if D−1/2LD−1/2 is large and D−1/2(L̃−L)D−1/2 is small, the ratio between
D−1/2LD−1/2 and D−1/2L̃D−1/2 will be close to 1. Since eigenvalues naturally relate to
the Laplacian form and to the ”size” of a matrix, the rest of the work is just formalizing
this idea in terms of algebra. Interested readers can find a full proof in [ST10].

6D is the same diagonal matrix we used in (6)

5

This lemma conveys an important idea that dictates the rest of our proof. It
basically means that given a sufficiently well connected graph (i.e. a graph of high
conductance), it suffices to bound the 2-norm of the difference between normalized
Laplacians. Therefore, in order to prove the original theorem, since we already know
that λ2(L) ≥ λ, it suffices to analyze the distribution of ||D−1/2(L̃− L)D−1/2||.

To do this, we notice that

||D−1/2(L̃− L)D−1/2|| ≤ ||D−1/2(Ã−A)D−1/2||+ ||D−1/2(D̃ −D)D−1/2|| (9)

from A + L = D where A denotes the adjacency matrix and D denotes the diagonal
matrix of vertex degrees. We analyze each of those terms separately. It turns out that
they both are easier to analyze than analyzing the Laplacian directly.

Finding the distribution of ||D−1/2(D̃ − D)D−1/2|| is relatively easy. This is be-
cause the eigenvalues of a diagonal matrix are just the diagonal entries themselves.
Consequently, bounding the maximum eigenvalue can be done by using a union bound
and a Chernoff bound. The union bound comes from the fact that in order for the
maximum diagonal entry to be large, one of the diagonal entries needs to be large so
we have to bound the probability of this happening. The Chernoff bound comes from
the fact that the diagonal entries of D̃ are just sums of random variables. Together, it
can be shown that

Pr[||D−1/2(D − D̃)D−1/2|| ≥ ελ/3] ≤ 1/6. (10)

The distribution of ||D−1/2(Ã−A)D−1/2|| is a little more tricky to analyze. First of
all, for any matrix B, conjugating by an invertible matrix C to get CBC−1 preserves
the eigenvalues of B. Consequently, it is equivalent to analyze the distribution of
||∆|| = ||D−1(Ã−A)||.

There are two main ideas in analyzing the eigenvalues of ∆. First of all, we can
bound the largest eigenvalue by bounding the trace of ∆m for some even number m.
This is because the trace of a matrix is equal to the sum of its eigenvalues. (The point
of m being even is to get rid of cases with negative eigenvalues.) The second key idea
is to relate the entries in the matrix ∆m to taking random walks in G.

The rest of the proof basically analyzes an arbitrary entry of ∆m. From the defi-
nition of matrix multiplication, ∆m(u, v) basically is the sum over all paths of length
m from u to v of the product of the edges on the path. This product is then bounded
by noticing that in expectation, any path that uses an edge only once has expected
value 0 since each edge has expected weight 0 as E(Ã) = A because the expected of
each edge in G is equal to its weight in G. Therefore, by looking at paths that use
edges at least twice and pairing entries ∆(a, b) with ∆(b, a), one can obtain a bound
the eventually leads to

Pr[||D−1/2(Ã−A)D−1/2|| ≥ ελ/3] ≤ 1/6. (11)

Therefore, combining these we see that G̃ is NOT a (1 + ε) approximation of G
with probability at most 1/3. To get the other part of the theorem, we can easily use
a Chernoff bound to get a bound on the number of edges appearing in the graph. This

gives us that G̃ has more than O
(
(logn)2

ε2λ2

)
edges with probability at most 1/6. This

finishes up the proof.

6

3 Sampling by Effective Resistance

3.1 Effective Resistance Background

The effective resistance in graphs derived from electrical networks shows great promise
as a new, powerful measure of distance and gives important contributions to the anal-
ysis of spectral graph theory. In the overview, we will define effective resistance by
modeling the graph as an electrical network, connect effective resistance to the Lapla-
cian, and look at the relationship between commute time and effective resistance. Then
we examine an algorithm that samples edges with probabilities proportional to their
effective resistance and give an analysis.

3.1.1 Calculating Effective Resistance

In order to understand effective resistance, we need to remember two laws from elec-
tromagnetism, Ohm’s and Kirchoff’s. Ohm’s Law states that V = ir if V is voltage, i
current, and r resistance. Kirchoff’s Law requires the conservation of current, stating
the current into any vertex is equal to the current leaving the vertex. The effective
resistance between two vertices u and v is then equal to the voltage differential between
the two when a unit of current is injected into u and a unit of current is extracted from
v.

Calculating the effective resistance on a small circuit is easy. When we have resistors
in series we simply add them and when we have resistors in parallel we combine their
inverses. We can then iteratively apply these two methods to combine all of the resistors
into one, yielding the effective resistance between two vertices. This gets much more
complicated as the circuit gets larger and below we give an expression of effective
resistance in terms of eigenvalues of the Laplacian.

3.1.2 Connection to Laplacian

In this section we will relate effective resistance to the Laplacian through a series of
matrix operations. We begin by defining a matrix B. We arbitrarily order the edges
on our graph and define B as an m× n matrix where

B(e, v) =

1 if v is e’s head

−1 if v is e’s tail

0 otherwise.

(12)

In our definition of effective resistance, we injected a current of 1 into a vertex v and
injected a current of −1 into a vertex u. The natural generalization of this identity is to
have an n-dimensional vector iext where iext(v) denotes the amount of current injected
into vertex v. We also set i to be the m-dimensional vector such that i(e) denotes the
amount of current flowing across edge e.7 From these simple definitions, we get the
equation BT i = iext. This equation can be verified as an expression of Kirchoff’s Law.

It is also quite natural to consider the n-dimensional vector v as the potential at
each vertex. The potential differential by any two vertices is uniquely determined by

7We define a positive value of i(e) to represent current flowing across e in the same direction that B
orients e.

7

the current and resistance on the edges of the graph. Let W be the m ×m diagonal
matrix so that W (e, e) = we. Then by Ohm’s law, we have that i = WBv.

Combining both of these equations we can get that iext = BTWBv. We also notice
through matrix multiplication that BTWB is equal to the Laplacian. This means that

iext = BTWBv = Lv.

The connection of this equation to effective resistance is quite clear. To compute
the effective resistance of the edge (u, v), we set iext to the vector corresponding to
injecting one unit of current into u and taking out one unit of current from v. Then,
we solve the above equation to get v and thereby obtain the potential difference which
is equal to effective resistance. Consequently, it is quite natural to try to consider some
sort of inverse of L.

The Laplacian has one eigenvalue of zero8 so we are not able to take normal inverse
of the Laplacian9. Instead we define the Moore-Penrose Pseudoinverse, L+, such that
LL+ = L+L projects into the column space of the Laplacian. Now we recall the
spectral theorem and decompose each matrix into a sum of eigenvectors, giving the
following definitions

L =

n∑
i=2

λiuiu
T
i L+ =

n∑
i=2

1

λi
uiu

T
i L+L =

n∑
i=2

uiu
T
i (13)

where the λi’s are eigenvalues and the ui’s are their corresponding orthonormal eigen-
vectors. Now we get the effective resistance Ruv between vertices u and v to be

Ruv = (eu − ev)
TL+(eu − ev) (14)

= L+
uu − 2L+

uv + L+
vv (15)

Here we can see that the effective resistance is inextricably tied to the Laplacian.

3.1.3 Connection to Commute Time

In this section, we relate the effective resistance to a property of random walks called
commute time. A random walk on a graph begins at a vertex and at each step follows
an edge incident on the current vertex with uniform probability. The hit time between
u and v is the expected time a random walk will take to traverse from u to v. The
commute time from u to v is expected time to get from u to v and back to u again, or
the sum of the hit times from u to v and from v to u. The commute time will be small
if there are a lot of short paths between vertices.

We are able to relate commute time to effective resistance with the following lemma

Lemma 4. If we look at two vertices u and v and call the commute time Cuv and the
effective resistance Ruv we can get a relation between the two in the form Cuv = 2mRuv.

We will not prove this lemma but it it is proven in [Cha09] and gives us a nice
connection between commute time and effective resistance.

8In following with the assumptions in the rest of the paper, we assume that the graph is connected. In a
graph that is not connected we will have multiple eigenvalues of zero.

9When we have an eigenvalue of zero that means the determinant is zero and the matrix is non-invertible.

8

3.2 Algorithm

Spielman and Srivastava introduced an alternative sampling algorithm for generating
a spectral sparsifier of O(n log n/ε2) edges in nearly linear time based on effective
resistance. Their paper [SS09] defines a sparsify algorithm that runs as follows

H = Sparsify(G, q)
Choose a random edge e with probability pe proportional to weRe and add

e to H with weight we/qpe. Take q samples independently with replacement,
summing weights if an edge is chosen more than once.

This algorithm picks exactly q edges total. Each edge it picks is randomly selected.
This means that

∑
e pe = 1. The paper also proves the following theorem

Theorem 5. Suppose we have G and H = Sparsify(G, q) and 1/
√
n < ε ≤ 1. If

q = O(n log n/ε2) and n is sufficiently large than with probability at least half H is a
(1 + e)-spectral approximation of G.

It makes sense to sample with probability related to effective resistance because we
know that an edge connecting u and v has effective resistance 1 then it is the only path
from u to v, any other path would lower the effective resistance. So this edge must be
picked. Effective resistance is a strong signal for the importance of an edge.

3.3 Analysis

We seek to show that for all x,

|xT L̃x− xTLx|
xTLx

≤ ε.

The idea behind doing this is to slightly strengthen the claim so as to eliminate the
need for the messy term x. More concretely, let S be the diagonal matrix such that

S(e, e) =
w̃e
we

=
(number of times e is sampled)

qpe
. (16)

The point of this is that

L = BTWB → L̃ = BT W̃B = BTW 1/2SW 1/2B. (17)

Given these, we do the following manipulations:

|xT L̃x− xTLx|
xTLx

=
|xTBTW 1/2SW 1/2Bx− xTBTWBx|

xTBTWBx
=
yT (S − I)y

yT y

where y = W 1/2Bx. This is nice because the expression yT (S−I)y
yT y

strongly suggests

analyzing the norm of the matrix (S − I). Unfortunately, this doesn’t quite work. y
does not range over all vectors as x does: y is always in the range of W 1/2B which is
not an invertible matrix. This means that while ||S−I|| ≤ ε implies our desired result,
it isn’t necessarily true.

The key insight that makes this method work is the construction of a Projection
matrix Π with several key properties. Π projects onto the space of all vectors y such that
y = W 1/2Bx for some x. This means the Πy = y for all y = W 1/2Bx. Furthermore,

9

Π’s structure needs to be sufficiently simple so that analyzing it isn’t too difficult.
Before showing Π’s structure, we will first note that

|xT L̃x− xTLx|
xTLx

=
yT (S − I)y

yT y
=
yTΠ(S − I)Πy

yT y
≤ ||Π(S − I)Π||.

Therefore, it suffices to show that ||Π(S − I)Π|| ≤ ε for some matrix Π. It turns out
that taking

Π = W 1/2BL+BTW 1/2 (18)

works. This can be shown without too much difficulty to be a projection matrix that
projects on to the space im(W 1/2B).

Π is more than just an arbitrary projection matrix though. This will become
evident from the analysis of ||Π(S − I)Π||. The basic idea is as follows: based upon
Π’s definition, it isn’t too difficult to see that

ΠSΠ =
1

q

∑
e

(number of times e is sampled)
Π(e)
√
pe

Π(e)T
√
pe

=
1

q

q∑
1

yiy
T
i

where each yi is a vector drawn from the distribution

y = Π(e)/
√
pe with probability pe.

The idea of this is that there are well known ways of analyzing the random variable
1
q

∑q
1 yiy

T
i given the variable y. From here, the paper cites a well known law of large

numbers for symmetric rank 1 matrices to bound the expected value of

||1
q

q∑
1

yiy
T
i − E[yyT]||.

From here, the rest of the proof is just a bit of simple algebra. The key idea here
was finding the correct matrix Π that had all the desired properties.

4 Comparing the Algorithms

In this section we will compare and contrast the algorithms and through this process
explore some properties of spectral approximations.

In both algorithms we assign a probability to different edges and sample edges based
on their probabilities. In the vertex degree algorithm we look at each edge e once and
choose it with probability pe. In the effective resistance algorithm we assign pe’s but
instead of sampling each edge we normalize all of them so that

∑
e pe = 1 so that we

can simply take q samples of the edges on the entire graph. In the effective resistance
algorithm we sample the graph as a whole rather than the edges one by one.

We can also gain a lot from understanding the cases when the two algorithms are
similar. For this we look at a result from [vLRH11] that relates the commute time Cuv
between u and v to the degrees of u and v in the form

1

Vol(G)
Cuv ≈

1

du
+

1

dv
→ Ruv ∝

1

du
+

1

dv
. (19)

10

This tells us that the effective resistance between two vertices is proportional to the in-
verse of their degree. This result holds if a graph is “reasonably large” and “reasonably
strongly connected”.

The sampling by degree algorithm splits the graph into subgraphs of high con-
nectivity and runs the vertex degree sampling algorithm on these subgraphs. This
partitioning into high connectivity subgraphs effectively makes the probability of each
edge proportional to the effective resistance of the edge. In the limit of highly con-
nected graphs, the probabilities we get from vertex degree begin to approximate the
effective resistance probabilities.

Figure 1: Two complete graphs joined by an edge.

In graphs with low connectivity, sampling by effective resistance works while sam-
pling by degree does not. We use an example to illustrate this. Consider two complete
graphs joined by one edge ej as shown in Figure 1.10 This edge is absolutely crucial to
preserving the Laplacian because we can split the graph by cutting this edge. In the
vertex degree sampling algorithm this edge actually is less likely to be picked than the
rest of edges because the vertices on both sides of the edge have the highest degree in
the graph. But the effective resistance of this edge is one, so the effective resistance
sampling algorithm will always pick this edge.

This example shows us that sampling by vertex degree must partition the graph
into regions with high connectivity. Only in regions of high connectivity is the vertex
degree a good indicator of the importance of an edge. This is due to the locality of
the vertex degree property; it does not take into account what is happening away from
that edge. Effective resistance overcomes this because it is a local property that takes
the entire graph into consideration.

5 Linear Algebra vs Combinatorics

One of the interesting shared features of both algorithms is that they seemingly are
just random sampling algorithms. It isn’t clear why linear algebra is intrinsically
necessary or fundamental to this problem. In this section, we’ll attempt to provide
some justification and intuition supporting the necessity of linear algebra.

Initially, we attempted find an analysis of spectral sparsification independent of
linear algebra. The first step in doing this would be a definition of spectral sparsifiers
that does not rely on linear algebra.

10This figure was taken from [ST10].

11

The most natural thing to try is using the definition of a cut sparsifier. We’ve
already shown that all cut sparisfiers are spectral sparsifiers, but the reverse does not
hold. One might try to fix the definition in some way, or perhaps find a weaker-but-
sufficient definition (for example, maybe a (1 + ε) cut sparsifier is guaranteed to be
a (1 + 2ε) spectral sparsifier). Unfortunately, this is doomed to not work, because it
turns out that verifying a cut-sparisfier is NP-hard. This means that given G,H, and
ε, it is NP-hard to check whether G is a (1 + ε)-cut sparsifier of H. However, it is
possible to check whether G is a (1 + ε)-spectral sparisfier of H in polynomial time.

The next thing to try might be forming a definition of a spectral sparsifiers from
one of the two algorithms we have for generating them. On a high level, this approach
is very unlikely to work because of the natures of the proofs of correctness. Both proofs
strengthened the claim first: this means that they proved that the output is not only
a spectral sparsifier, but a particular kind of spectral sparisifier.

Expanding on this idea, consider the sampling by vertex-degree algorithm. Based
on lemma 3, we might try defining spectral sparsifiers based on the relationship between
||D−1/2(L−L̃)D−1/2|| and λ2(D

−1/2LD−1/2). This hypothetical definition can be made
into a combinatorial interpretation by the fact that λ2(D

−1/2LD−1/2) is bounded by
Cheeger’s inequality and ||D−1/2(L−L̃)D−1/2|| can be bounded by the trace of a matrix
which in turn is strongly related to random walks. Unfortunately, this attempt fails
because graphs where λ2(D

−1/2LD−1/2) is 0 do indeed have spectral sparsifiers. This
is why the vertex sampling algorithm is coupled with a partitioning algorithm.

Using effective resistance seems even harder because the proof of correctness for
sampling by effective resistance is heavily rooted in linear algebra.

We conclude this section by noting another possible approach. Suppose we find a
combinatorial algorithm for spectral sparsification verification. Then, this algorithm
could be used to create a combinatorial definition for spectral sparsification. Unfortu-
nately, we weren’t able to find any such algorithm, but we note that one would certainly
be of interest.

6 Conclusion

Originally we wanted to give an overview of spectral sparsifiers and provide a combi-
natorial analysis of the algorithms. We found that spectral sparsification relies heavily
on inherently linear algebraic properties and techniques and were not able to formulate
a combinatorial analysis. Instead, we focused on the intuition behind two of the most
recent sparsification algorithms. Using the shared intuition from both algorithms it is
evident how sampling by effective resistance sampling improves on sampling propor-
tional to vertex degree. Hopefully this intuition can help lead to new work in spectral
sparsification.

References

[BK96] A. Benczur and D. Karger. Appoximating s − t minimum cuts in O(n2).
1996.

[BSST13] Joshua Batson, Daniel Spielman, Nikhil Srivastava, and Shang-Hua Teng.
Spectral sparsification of graphs: Theory and algorithms. 2013.

12

[Cha09] Shuchi Chawla. Random walks and markov chains. University Lecture,
2009.

[Chu07] Fan Chung. Four proofs for the cheeger inequality and graph partition
algorithms. 2007.

[SS09] D. Spielman and N. Srivastava. Graph sparsification by effective resistances.
2009.

[ST10] D. Spielman and S. Teng. Spectral sparisfication of graphs. 2010.

[vLRH11] Ulrike von Luxburg, Agnes Radl, and Matthias Hein. Hitting and commute
times in large graphs are often misleading. 2011.

13

	Background
	Sampling by Vertex Degree
	Sampling by Effective Resistance
	Comparing the Algorithms
	Linear Algebra vs Combinatorics
	Conclusion

