
Spectral Sparsification of Undirected Graphs

Ilya Razenshteyn
ilyaraz@mit.edu

December 11, 2012

Abstract

A cut sparsifier for an undirected graph is a sparse graph, which preserves up
to multiplicative (1 � ") factor the values of all cuts. It was shown in [BK96] how
to construct cut sparsifiers with O(n logn="2) edges in near-linear time. In [ST11]
Spielman and Teng considered much stronger notion: spectral sparsification. A spectral
sparsifier is a sparse graph, which (almost) preserves the Laplacian of the original graph.

This report (which was written as a final project for the MIT course “Advanced
Algorithms”) surveys two constructions of spectral sparsifiers.

The first construction is by Spielman and Srivastava [SS11]. They show how to
build spectral sparsifiers with O(n logn="2) edges in near-linear time. The second
construction is by Batson, Spielman and Srivastava [BSS09]. While having fewer edges
(O(n="2) instead of O(n logn="2)), these sparsifiers require much more (but still poly-
nomial) time to construct.

1 Introduction
One recurring topic in Graph Theory is how to approximate a given graph with much
sparser one while preserving certain properties. A very useful and clean notion of cut
sparsification was introduced in [BK96] by Benczúr and Karger. They proved the
following result.

Theorem 1 ([BK96]). Let " > 0 be some sufficiently small parameter. For every
undirected weighted graph G there exists another undirected weighted graph ~G

with the same set of vertices and only O(n logn="2) edges such that every cut
value in ~G is within (1� ") of the corresponding value in G. Moreover, ~G can be
found in time O(m log3 n) with high probability.

Two obvious applications of Theorem 1 are the following:

� by sparsifying graph and then running the algorithm of Goldberg and Rao [GR98]
we can find (1+ ")-approximations to the maximum (s; t)-flow and the minimum
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(s; t)-cut in time O(m log3 n+n3=2 logn log(nU)="3), where U is an upper bound
on the capacities in our network;

� by sparsifying graph and then running the algorithm of Klein, Stein and Tar-
dos [KST90] we can find an O(logn)-approximation to the sparsest cut in time
O(n2 log3 n).

The proof of Theorem 1 goes along the following lines. The first naive idea is to
employ uniform random sampling (in case of unweighted graphs). It turns out that one
can prove that it works, provided that the minimum cut is large enough. To overcome
this problem with small cuts one has to sample edges with probabilities inversely
proportional to their strong connectivities (for the precise definition see [BK96], but
informally speaking, strong connectivities show how well connected the ends of edges
are).

In [ST11] Spielman and Teng considered a singificantly stronger notion of sparsi-
fication: the so called spectral sparsification. To define it we need a notion of graph
Laplacian.

Definition 1. Let G = (V;E;w) be an undirected weighted graph. Then the following
quadratic form is called Laplacian of G:

LG(x) =
X

(u;v)2E

w(u; v)(xu � xv)
2;

for x 2 RV .
Definition 2. We say that ~G is a spectral sparsifier of G, if for every x 2 Rn

L ~G(x) 2 (1� ")LG(x):

To see why the notion of spectral sparsification is stronger than that of cut sparsifi-
cation it is sufficient to observe that LG(1S) is exactly equal to the cut value of (S; �S).
But we require much more: to preserve LG(x) for every x, not only for the indicators.

We will survey two constructions of spectral sparsifiers. The first is from [SS11],
which gives sparsifiers with O(n logn="2) edges matching the bound of Theorem 1.
Moreover, these sparsifiers can be found in near-linear time. The second construction
is from [BSS09]: it gives sparsifiers with O(n="2) edges, but the algorithm for building
them is much slower (nevertheless, even the existance of near-linear-sized spectral
sparsifiers is higly non-trivial).

Let us mention two applications of spectral sparsification.
First, since spectral sparsifiers approximately preserve eigenvalues of Laplacians,

one can look at sparsifiers of the complete graph Kn as expander graphs [HLW06].
Technically speaking, this analogy is quite vague, because expanders are constant-
degree regular graphs, on the other hand, even the best construction of spectral sparsi-
fiers from [BSS09], despite giving a constant average degree, does not provide graphs
with constant maximum degree. Nevetheless, it is proved in [BSS09] that spectral
sparsifiers of Kn share several properties with constant-degree expanders.
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Second, spectral sparsification can be used to prove the existence of good ap-
proximate John decompositions (see [Bal97] for an excellent introduction to Convex
Geometry and [Nao11] for a great exposition of geometric applications of [BSS09]).

Third, spectral sparsification can be used for dimension reduction in `1-spaces.
The classic theorem of Johnson–Lindenstrauss [DG03] says that if we have n vectors
in Rd, then we can map them into RO(logn="2) so that to (1�")-preserve their pairwise
Euclidean distances. This theorem has immense number of applications (in particular,
we will use it to find spectral sparsifiers quickly). It would be great to extend it to `1
(kxk1 :=

P
i jxij), but in the series of papers [BC05], [LN04], [ACNN11], [Reg11] it was

proved that one needs dimension to be essentially linear in n in this case. Nevertheless,
in [Tal90] it was proved that one can reduce dimension to O(n logn="2). Using spectral
sparsification one can sharpen this bound to O(n="2) (see [Nao11] for the exposition).

1.1 Organization of the report
Our report is organized as follows. First, in Section 2 we review the definitions and the
results we will need further. Then, in Section 3 we show how to reduce the problem
of Laplacian sparsification to the following clean linear-algebraic problem.

Problem 1 (Sparsification of a decomposition of identity). Let q1; q2; : : : ; qm be the set
of vectors from R

n such that
mX
i=1

qiq
t
i = I: (1)

Let " > 0 be some parameter. We want to sparsify (1): find N � m and the
numbers �1; �2; : : : ; �m � 0 such that there are at most N non-zero �’s and all
the eigenvalues of

P
i �iqiq

t
i are within [1� "; 1 + "].

What is the smallest N = N(n; ") can we guarantee?

In Section 4 we show the solution for this problem from [SS11] that is based on
sampling (it turns out that one should sample qi’s with probabilities proportional to
kqik22) and gives N = O(n logn="2), in Section 5 we show the “deterministic” approach
of [BSS09] that gives N = O(n="2).

For clarity we assume that we want to sparsify an unweighted connected graph.

1.2 Notation
� ei stands for the i-th basis vector in Rn;

� I stands for the identity matrix;

� IV stands for the operator that maps vectors from V to themselves, and maps
everything from V ? to zero;

� �1(A); �2(A); : : : ; �n(A) stand for the eigenvalues of A (in no particular order);
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� M stands for the incidence matrix of our initial graph: this is m�n matrix with
rows corresponding to edges. A row that corresponds to an edge (v;w) is equal
to ev � ew.

2 Preliminaries
In this section we introduce several definitions and results in linear algebra we will
need further.

Let A 2 Rn�n be a symmetric matrix.

Theorem 2 (Eigendecomposition). All the eigenvalues of A are real and there exists
an orthonormal basis of Rn that consists of A’s eigenvectors.

We can write

A =
nX
i=1

�iuiu
t
i;

where �1; �2; : : : ; �n are the eigenvalues of A, and u1; u2; : : : ; un are the corre-
sponding eigenvectors that form an orthonormal basis of Rn. This decomposition
is called eigendecomposition of A.

We can use the notion of eigendecomposition to introduce a pseudoinverse of A.

Definition 3 (Pseudoinverse). A pseudoinverse of A is the following matrix:

A+ :=
X
i:�i 6=0

1

�i
uiu

t
i:

Clearly, if A is non-degenerate (equivalently, �i 6= 0 for every i), then A+ = A�1.
On the other hand, for every symmetric A

AA+ = A+A = Iim(A);

where Iim(A) is a linear operator that maps vectors from ker(A) to zero and maps
vectors from im(A) to themselves (this definition is correct, because we can consider a
decomposition Rn = ker(A)� im(A)).

If a symmetric matrix is positive semi-definite (equivalently, all the eigenvalues are
non-negative), then we can consider its square root.

Definition 4 (Square Root of a PSD Matrix).

A1=2 :=
X
i

p
�iuiu

t
i:

Clearly, A1=2A1=2 = A.
During the presentation of spectral sparsification algorithms we will use the follow-

ing matrix norm crucially.
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Definition 5 (Spectral Norm).

kAk2 := max
x

kAxk2
kxk2 :

For symmetric matrices spectral norm is just the maximum absolute value of an
eigenvalue. If I is the identity matrix, then kA � Ik2 � " iff all the eigenvalues of A
lie within [1� "; 1 + "].

We will need the following “law of large numbers” for matrix-valued random vari-
ables proved by Rudelson and Vershynin in [Rud96], [RV07].

Theorem 3. Let y be an n-dimensional vector-valued random variable. Suppose
that kyk2 �M with probability 1 and kE[yyt]k2 � 1. Then,

E

2
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 1

N

NX
i=1

yiy
t
i �E[yiy

t
i ]







2

3
5 � O

0
@M

s
logN

N

1
A ; (2)

where yi – independent copies of y.

This theorem quantifies the speed of convergence of
PN

i=1 yiy
t
i=N to E[yyt].

We need the following peculiar identity for the so-called rank-1 updates.

Theorem 4 (Sherman-Morrison formula, [SM50]). If A is square and invertible and
vtA�1u 6= �1, then

(A+ uvt)�1 = A�1 � A�1uvtA�1

1 + vtA�1u
:

An update of the form “A := A+ uvt” is called rank-1, because the rank of uvt is
equal to one.

3 Reduction to Sparsification of a Decomposition of Identity
In this section we reduce our original problem of the Laplacian sparsification to Prob-
lem 1.

If G is an undirected unweighted graph, then, clearly

LG(x) = xtLx;

where Lvv equals to the degree of v, Lvw = �1, if (v;w) 2 E, and Lvw = 0, otherwise.
We leave the following Lemma as an exercise.

Lemma 1. We have 1 2 ker(L). Moreover, ker(L) = h1i iff G is connected. In this
case im(L) = h1i?

We have the following natural rank-1 decomposition of L:

L =
X

(v;w)2E

(ev � ew)(ev � ew)
t: (3)
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Now let us understand what does it mean for a graph ~G to approximate G in the
sense of Laplacian. Let us denote ~L the Laplacian of G. We want that for every x 2 Rn

xt ~Lx 2 (1� ")xtLx: (4)

Clearly, if x 2 ker(L), then there is nothing to worry about, since both sides of (4)
are equal to zero. So, it is only left to ensure that (4) holds for x 2 im(L). In this
case we can write x = (L+)1=2y for y = L1=2x 2 im(L). Thus, we want that for every
y 2 im(L)

yt(L+)1=2 ~L(L+)1=2y 2 (1� ")yty:

It is equivalent to
k(L+)1=2 ~L(L+)1=2 � Iim(L)k2 � ":

From the definitions of pseudoinverse and the square root of a PSD matrix we have

Iim(L) = (L+)1=2L(L+)1=2 =
X

(v;w)2E

(L+)1=2(ev � ew)(ev � ew)
t(L+)1=2: (5)

Since
~L =

X
(v;w)2E


(v;w)(ev � ew)(ev � ew)
t;

where 
(v;w) is a weight we assign to the edge (v;w) in ~G, we have

(L+)1=2 ~L(L+)1=2 =
X

(v;w)2E


(v;w)(L+)1=2(ev � ew)(ev � ew)
t(L+)1=2: (6)

Comparing (5) and (6) we can observe that we are facing an instance of Problem 1:
first, we pass from the whole Rn to a subspace h1i?, then we observe that (5) is a
decomposition of the identity in this subspace with qvw = (L+)1=2(ev � ew), and (6) is
exactly a sparsification of this decomposition.

4 Sparsification by Sampling

4.1 Existential Argument
In this section we present the argument from [SS11], which shows the existence solution
for Problem 1 with N = O(n logn="2). Suppose we want to sparsify a decomposition
of indentity with independent sampling. What probabilities for the terms qiqti should
we choose? Let us denote them by p1; p2; : : : ; pm. Let us assume that we make N

independent samples i1; i2; : : : ; im from [m] with probabilities pi and form a sum

X =
1

N

NX
j=1

qijq
t
ij

pij
:

6



Clearly, E[X] = I. Now let us use Theorem 3 to understand what we should take N
equal to. We have

M = max
i

kqik2p
pi

:

In order to make M as small as possible we should take pi proportional to kqik22. Thus,
we have

M =

vuut mX
i=1

kqik22 =

vuut mX
i=1

tr(qiq
t
i) =

vuuttr

 
mX
i=1

qiq
t
i

!
=
p
n:

Now we just invoke Theorem 3 and get N = O(n logn="2) immediately.
Remark: suprisingly enough, it turns out that for the graph Laplacian case kqvwk22

is equal to the effective resistance of an edge (v;w). This intuition is heavily used
in several recent developments. Futhermore, there is a strong similarity between this
sparsification procedure and that of from [BK96]: effective resistances reflect edge
connectivities.

4.2 Near-linear Time Algorithm (a High-Level Idea)
Despite it is proved in the previous section that there exists a sparsifier of sizeO(n logn="2),
we still do not have a fast algorithm for finding one. Indeed, in order to sample edges
we must know kqvwk22 for every edge (v;w) 2 E. Let us recall that

kqvwk22 = k(L+)1=2(ev � ew)k22 = (ev � ew)
tL+(ev � ew):

Unfortunately, we do not know how to compute L+ quickly, but luckily it is sufficient
for us to compute kqvwk22’s approximately (for instance, any O(1)-approximation is
sufficient). Let us observe that L = M tM , where M is the incidence matrix of the
graph (m�n matrix, where rows correspond to edges, a row that corresponds to (v;w)

is equal to ev � ew). Now let us rewrite

kqvwk22 = (ev � ew)
tL+(ev � ew) = kML+(ev � ew)k22;

so we are interested in pairwise `2-distances between the columns of ML+. One could
compute the rows ofML+ by multiplyingm rows ofM by L+. Amazingly, there exists
a way to do it in near-linear time approximately (see [KMP10] for more details).

Theorem 5 ([KMP10]). There is an algorithm that given x 2 Rn computes y 2 Rn
such that

ky � L+xkL � "kL+xkL;
where kzkL :=

p
ztLz, in time ~O(m).

Unfortunately, this is still not sufficient for our purposes, because there are m rows
and we get ~O(m2) time in total.

Here comes into the play the celebrated result of Johnson and Lindenstrauss.
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Theorem 6 ([DG03]). Let x1; x2; : : : ; xn 2 Rd be arbitrary vectors. If Q is an O(logn="2)�
d matrix with (properly normalized) i.i.d. Gaussian entries, then

Pr[ 8i; j kQ(xi � xj)k2 2 (1� ")kxi � xjk2] � 0:99:

So, it is sufficient to compute a matrix QML+. We can compute QM in time
O(m logn), and then compute QML+ by invoking the solver from [KMP10] O(logn)

times, thus getting the overall ~O(m) running time.
Remark: many more details has to be filled here. For instance, what accuracy do

we need, when invoking the solver from [KMP10]? For complete treatment see [SS11].

5 Iterative Sparsification
To improve the bound O(n logn="2) one should switch from (independent) edge sam-
pling to something else. The reason is that in Theorem 3 the factor

p
logN is essential:

consider the case, when y is a random basis vector. Then, clearly, we need at least

(n logn) samples to choose each vector at least once. Thus, no matter what proba-
bilities we are using for independent edge sampling, we can not overcome the bound
O(n logn). So, to get the optimal O(n="2) bound one has to use “deterministic” meth-
ods.

We will use the iterative approach: on each step we keep track of a current matrix
A and perform a rank-1 update of it — set A := A + �qjq

t
j for some carefully chosen

� � 0 and j 2 [m]. Our goal is that the eigenvalues of A are within a multiplicative
factor (1� ") of each other.

Since tr(A+ vvt) = tr(A)+ kvk22, the eigenvalues of A increase by kvk22=n “on aver-
age”. If all the eigenvalues always increase by the same amount, we are done: after some
time all of them will be close to each other (in multiplicative sense). Unfortunately,
we are not guaranteed to have “uniform” increases.

Here comes the brilliant idea of Batson, Spielman and Srivastava [BSS09]. They
consider the following “barrier” potential functions, which will allow us to control the
pace of eigenvalues’ growth.

Definition 6. Let A be a square matrix. Then

Lx(A) = tr(A� xI)�1 =
X
i

1

�i(A)� x

Ux(A) = tr(xI � A)�1 =
X
i

1

x� �i(A)

The idea of [BSS09] is to maintain two barriers l and u such that Ll(A) and Uu(A)

are small, and all the eigenvalues are within (l;u), which will allow us to conclude that
we can perform a rank-1 update to A and increase l and u by certain amounts.

More formally, let �L; �U ; "L; "U ; l0; u0 be some parameters, moreover, �L; �U ; "L; "U
are positive. We build a sequence of matrices A0; A1; : : : ; AN such that
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� A0 = 0;

� Ai = Ai�1 + �qjq
t
j for some � > 0 and j 2 [m];

� Lli(Ai) � Lli�1(Ai�1) � "L, where li = l0 + i � �L;
� Uui

(Ai) � Uui�1
(Ai�1) � "U , where ui = u0 + i � �U ;

� all the eigenvalues of Ai lie within (li;ui).

We will show that for these invariants to hold it is sufficient for the following relations
to hold.

� "L = �n=l0, "U = n=u0;

� 1=�U + "U � 1=�L � "L;

� "L � 1=�L.

One can see that we can take "L = �("), "U = �("), �L = 1, �U = 1 + �("), l0 =

��(n="), u0 = �(n=") and get a desired sparsifier after O(n="2) steps. The reason
is that after N steps all the eigenvalues will be within [l0 + N � �L; r0 + N � �R] =

[��(n=") +N ; �(n=") +N(1 +�("))]. So, after O(n="2) steps all the eigenvalues are
within [N(1� ");N(1 + ")]. After a proper normalization of AN we are done.

Suppose we want to set Ai = Ai�1 + �vvt. As a simple consequence of Theorem 4
we get the following formulae.

Lli(Ai) = Lli(Ai�1)� vt(Ai�1 � liI)
�2v

1=�+ vt(Ai�1 � liI)�1v

Uui
(Ai) = Uui

(Ai�1) +
vt(uiI � Ai�1)

�2v

1=�� vt(uiI � Ai�1)�1v

Using these formulae it is straightforward to prove the following Lemmas.

Lemma 2. Lli(Ai) � Lli�1(Ai�1) iff 0 < 1
� � �(v), where

�(v) := �vt(Ai�1 � liI)
�1v +

vt(Ai�1 � liI)
�2v

Lli(Ai�1)� Lli�1(Ai�1)
:

Lemma 3. Uui
(Ai) � Uui�1

(Ai�1) iff 1
� � � (v), where

� (v) := vt(uiI � Ai�1)
�1v +

vt(uiI � Ai�1)
�2v

Uui�1
(Ai�1)� Uui

(Ai�1)
:

As a result we prove the following Theorem.

Theorem 7. If � (v) � �(v), then there exists an � > 0 such that if we set Ai :=

Ai�1 + �vvt, then

� Lli(Ai) � Lli�1(Ai�1);

� Uui
(Ai) � Uui�1

(Ai�1);
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� all the eigenvalues of Ai are within (li;ui).

Proof. The first and the second statement are trivial corollaries of Lemma 2 and 3.
Thus, it is left to argue about eigenvalues. Clearly, all the eigenvalues of Ai�1 (and,
thus, of Ai) are at least li�1 + 1="L � li�1 + �L = li, because Lli�1(Ai�1) � "L. Since
Lli(Ai) is finite, we have that all eigenvalues of Ai are strictly greater than li. Now
let us argue about the upper bound. From Lemma 3 it follows that if � is sufficiently
small, then Uui

(Ai) is finite (and even small). If the largest eigenvalue of Ai is at least
ui, it means that for some small � Uui

(Ai) blows up, thus we have a contradiction.

Now it is left to prove that there exists j 2 [m] such that � (qj) � �(qj). For this
we prove the following theorem.

Theorem 8. If 1=�U + "U � 1=�L � "L, thenX
j

� (qj) �
X
j

�(qj)

Proof. One can prove that

X
j

� (qj) =
X
t

(ui � �t(Ai�1))
�1 +

P
t(ui � �t(Ai�1))

�2P
t(ui�1 � �t(Ai�1))�1 �

P
t(ui � �t(Ai�1))�1

X
j

�(qj) = �
X
t

(�t(Ai�1)� li)
�1 +

P
t(�t(Ai�1)� li)

�2P
t(�t(Ai�1)� li)�1 �

P
t(�t(Ai�1)� li�1)�1

:

One can fairly easy show that
P

j � (qj) � "U + 1=�U . With some work one can show
that

P
j �(qj) � 1=�L � "L. The desired inequality follows.

So, the final algorithm is the following: on each step we compute �(qj) and � (qj) for
every j, and choose j such that � (qj) � �(qj). Then choose � such that � (qj) � 1=� �
�(qj), and set Ai := Ai�1 + �qjq

t
j . We repeat this process until all the eigenvalues of

Ai are within (1� ") of each other, and then do a normalization.

6 Conclusion
We presented two construction of spectral sparsifiers. The better of two achieves the
bound of O(n="2) edges. One challenging open problem here is to achieve the same
bound for cut sparsifiers with “combinatorial” argument. The only known result in
this direction is [GRV09].
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