
Scheduling theory prevails against powerful sel�sh clients

(Author names removed for anonymity.)

January 4, 2017

Abstract

You run a job processing machine. Every day, many clients send you jobs to complete. You process

the jobs in a uniformly random order. Everyone is happy.

One day, you notice that many size-1 jobs are waiting for your machine to solve a size-1000 job.

You code in an optimization: process the smallest job �rst. You tuck yourself into bed secure in the

knowledge that you've decreased your clients' total waiting time.

A week later, you notice your machine isn't receiving large jobs anymore. In fact, every day, your

machine processes more and more jobs, and those jobs are smaller and smaller. What's happened?

Maybe you can �gure it out before reading on.

Oh no! Your clients are sel�sh! They don't like waiting, and they've noticed your clever optimization.

They're breaking up all of their jobs into the smallest possible pieces to force themselves through your

queue �rst. Your noble intentions have paved the road to hell.

If only there were a truthful job scheduling system: a way to process jobs faster than uniformly at

random, that doesn't allow an adversary to shorten their waiting time by cleverly breaking up their job

into small pieces.

In this paper, we construct truthful job scheduling algorithms, and prove upper and lower bounds on

the problem's competitive ratio in both an o�ine and an online setting.

1 Introduction

In [4], Nisan and Ronen �rst connected scheduling theory to algorithmic game theory. They introduced
the idea of a truthful algorithm:

De�nition. A job scheduling algorithm is truthful if no client can improve their job's expected completion
time by dishonestly manipulating their job's parameters.

How can an adversarial client dishonestly manipulate their job's parameters? A client can overreport
their job's running time, e.g. submit a 1-minute job claiming that it takes 10 minutes. (However, we do not
allow underreporting, since such lying is easily detectable; we can punish the lie by simply stopping the job
after its reported time is up.) Also, in a model with release times, a client can wait before releasing their
job.

Other authors have extensively studied these so-called basic adversaries. See [1, 2].
In this paper, we introduce a more powerful adversary called a parallel adversary. These clients, in

addition to padding their job length and (when applicable) releasing later than necessary, can split up their
job into many independent sub-jobs which can be executed in parallel. Speci�cally, a client with a jobJ
of length t can instead submit many sub-jobs j1, j2, . . . , ji of total length at least t. The job processing
server does not know which jobs came from the same client. Each client sel�shly wants to minimize their
completion time, i.e., the maximum completion time of any of their sub-jobs.

Parallel adversaries pose a di�cult challenge. A naive algorithm, such as shortest �rst, incentivizes clients
to split their jobs into the smallest chunks possible.

We believe our parallel adversary model to be more realistic in most contexts than the basic adversary
model. However, one issue with our model is that we have only formulated it in the case where the job

1

processing server is a single machine. When the job processing server has many machines, it is natural to
want clients to break their jobs up into small pieces to be processed in parallel. So the truthfulness condition,
that clients cannot improve their expected completion time by breaking their job up into many pieces, is
unrealistic. It would be an interesting extension of this paper to de�ne �truthful� for parallel adversaries in
the multi-machine case.

In this paper, we analyze two settings for parallel adversaries:
• O�ine � All jobs are known and available to process at the starting time t = 0.
• Online � Jobs are received at arbitrary times.
We prove the following results:
• In the o�ine setting, there is a 2-competitive truthful algorithm.
• In the online setting, there is a 6-competitive truthful algorithm.
• In both the o�ine and online settings, there is no 1.1292-competitive truthful algorithm.

2 Related Work

The following is a survey of related work in truthful scheduling theory. This section is not necessary for
understanding our new results.

In [2], the authors consider basic adversaries in a multiple-machine model. Unlike us, they wish to
minimize the makespan (the time at which all jobs have been completed) rather than the total waiting time.
They provide randomized, truthful, 3

2 -competitive algorithms for the problem of minimizing the makespan.
The rough idea of their approach is to �rst compute (in non-polynomial time) an optimal schedule, OPT , and
then return either OPT or OPTmirror, each with probability 1

2 . Here OPT
mirror is essentially a re�ection

of OPT over its max completion time, though the details vary for each speci�c case. Truthfulness follows
from the fact that each job's expected completion time depends only on the makespan of OPT , and the
job's execution time � so all adversaries will aim to make OPT as good as possible, and thus act truthfully.
Moreover, since OPTmirror has at most twice the makespan of OPT , the algorithm is 3

2 -competitive.
The authors of [2] also consider the distinction between the weak and strong models of completion. In the

weak model of computation, a job which pads its runtime with garbage work needs to wait for the garbage
work to �nish before being considered complete. In the strong model, the job is considered complete once all
the real work is �nished. We assume the weak model of completion in our discussion for the sake of clarity,
but all of our results can be trivially generalized to the strong model as well.

In [1], Angel et al. investigate the problem of minimizing the sum of weighted completion times on
possibly many machines, where each client reports their job's running time and possibly weight, with the
goal of being completed as early as possible. Angel's model is di�erent from the basic adversary model in
that jobs can both overreport and underreport their running time � for example, a job with running time 10
can claim that it only takes time 1 to process.

They begin with the case where the weights of the jobs are all public information, and therefore the jobs
can't lie about their weights. Angel et al. demonstrate that if preemption � that is, running one job for some
time, then deciding to switch to a second job before completing the �rst � is not allowed, then we cannot
achieve any competitive ratio with the optimal solution in the case where the true running times and weights
are all public. The intuitive reason for this is quite simple: any job can claim an arbitrarily small running
time, and we may discover only after starting the job that the true running time was enormous, and that
we should have run that job much later. This is easily corrected when preemption is allowed, because our
algorithm can heavily punish jobs that claim a runtime less than the true runtime, by preempting the job
after running for the claimed runtime. The algorithm then runs the jobs in order of their claimed runtimes,
shortest �rst. With this algorithm it is easy to see that all jobs are incentivized to report their true running
times, and it is therefore truthful, and yields the same solution as the optimum in the case where all true
running times are public.

To modify their algorithm for the case where job weights are also private, Angel et al. show that the
algorithm must accept payments from each job depending on their claimed weight in order to keep their
algorithm truthful in this case.

2

In our work, we do not consider the case of weights; we assume all jobs have the same weight, so our
minimization objective is simply the sum of completion times. As in Angel et al, jobs are still allowed to
claim a runtime which is longer than their true runtime, since this assumption is very realistic � a job can
simply pad itself with arbitrary garbage work at the end to achieve a longer runtime. The key di�erence
between our work and that of Angel et al. is essentially that we modify the mechanism by which a job can
pretend to have a shorter runtime than its true runtime, in order to be more faithful to reality, as described
in Section 1.

3 A Truthful O�ine Algorithm

From here on, we will view the jobs themselves as the sel�sh adversaries. So instead of saying e.g. �A
client splits their job into parts,� we will say e.g. �The job splits itself into parts to decrease its completion
time.�

We begin with a discussion of the o�ine case, in which all jobs arrive at the same time (i.e. all release
times are 0). The goal of our algorithm is to minimize the sum of completion times. Each individual job's
objective is to minimize (sel�shly) its own expected completion time, i.e., the last completion time of its
component sub-jobs.

Theorem 1. There is a randomized truthful algorithm for this problem.

We propose the following randomized algorithm, which we will refer to as the random stack algorithm.
We pick a random job, choosing each job with probability proportional to its stated running time, and
process that job last. We then iterate this to choose the second-to-last, third-to-last, etc, jobs. In this way
we build our job processing queue in reverse order, i.e. we build a stack. At each step, a job is chosen to be
pushed onto the stack with probability proportional to its stated runtime. Once the stack is built, we run
the jobs by iteratively popping and running the topmost job in the stack.

Claim. Our proposed algorithm is truthful. That is, no job is incentivized to report a running time longer
than its true running time, and no job is incentivized to split itself into sub-jobs.

Proof of claim. It is obvious that no job is incentivized to claim a runtime longer than its true runtime, since
this would only increase the job's chance of being pushed into the stack at each step.

So it su�ces to show that no job J can, by splitting itself into two or more sub-jobs, decrease the expected
time by which all of its sub-jobs will �nish.

Observe that job-splitting does not change the sum total of running times across the sub-jobs associated
with the original job J , nor does it change the total running time of the entire list of jobs. Observe also that
the completion time of J is determined by when the �rst of J 's sub-jobs is placed into the stack. Before any
of J 's sub-jobs are pushed into the stack, at each step, the probability that one of J 's sub-jobs is pushed into
the stack is proportional to the total running time of all of J 's sub-jobs. But this total is just the running
time of the original job J . Therefore, no matter how it's split into sub-jobs, J cannot change the probability
that one of its sub-jobs is chosen to go last at each step. Therefore, holding all other jobs constant, no job
J can decrease its expected completion time by splitting itself into sub-jobs.

Finally, a job J cannot bene�t from lying in multiple ways (i.e. splitting into sub-jobs and then increasing
the length of some of those sub-jobs), because we can iteratively remove one lie at a time using our above
arguments without increasing the job's expected completion time. This completes the proof of our algorithm's
truthfulness. �

Remark. In fact, we have proven an even stronger result. Namely, if a job J splits itself up into sub-jobs
of the same total length, then not only does it not change its expected completion time, it does not even
change the distribution over its possible completion times.

3.1 Analysis of Competitive Ratio

Recall that we wish to minimize the sum of completion times. The optimal algorithm for this objective
simply runs all jobs in order from shortest to longest. This greedy algorithm fails to be truthful because all

3

jobs are incentivized to split themselves into in�nitesimally small sub-jobs.

Theorem 2. Our proposed algorithm achieves a competitive ratio of at most 2. That is, its expected sum of
completion times is at most twice that of the greedy algorithm.

Proof. Suppose there are n jobs J1, J2, . . . , Jn with associated positive runtimes t1 ≤ t2 ≤ · · · ≤ tn.
First we analyze the optimal non-truthful greedy algorithm. This processes jobs in the order J1, . . . , Jn,

yielding a total waiting time of t1 + 2t2 + 3t3 + · · ·+ ntn. We will rewrite this sum as
∑
b≥amin(ta, tb).

We now turn to our randomized algorithm. According to our algorithm, a job Ja is placed into the stack
with probability proportional to ta at each step, while a job Jb is pushed into the stack with probability
proportional to tb at each step. Therefore, given that one of Ja or Jb was chosen in a certain step, the
probability that Ja was chosen is ta

ta+tb
. So our algorithm will run job Jb before job Ja with probability

ta
ta+tb

. Therefore, the expected time that job Ja needs to wait while job Jb runs is equal to this fraction

multiplied by tb, the running time of Jb. This is an expected wait of tatb
ta+tb

. Therefore, the total expected

time that job Ja waits before it can be started is
∑
b6=a

tatb
ta+tb

. We add ta to get Ja's expected completion

time, ta +
∑
b6=a

tatb
ta+tb

. Summing this expression over all jobs gives our expected sum of completion times:

E [total waiting time] =
∑
a

ta +
∑
a 6=b

tatb
ta + tb

=
∑
b≥a

2tatb
ta + tb

.

Interestingly, this is just a sum of harmonic means. To each term of the above sum, apply the inequality
xy
x+y ≤ min(x, y), valid for all positive real numbers x and y. The result: our algorithm's expected sum of

completion times is at most
∑
b≥a 2min(ta, tb). This is exactly twice the optimal sum of completion times.

Thus, our algorithm is 2-competitive.

It is not immediately clear what is the worst-case for our algorithm. We conjecture that our algorithm
has competitive ratio better than 2, but we could not prove a better bound. The worst case we found is a
competitive ratio of slightly more than 1.5 for the set of job sizes { 1

n2 |4 ≤ n < 4000}. Determining the true
competitive ratio would be an interesting further exploration.

3.2 Random Variable Formulation

Finally, we present an interesting alternative formulation of our algorithm. The constraint on truthfulness
is essentially that any group of jobs with the same sum of runtimes should have the same expected waiting
time for the last job in the group to complete. So it would be nice if for each job J we could de�ne a
continuous random variable XJ , such that for any set S of jobs with the same sum of runtimes, maxJ∈S(XJ)
is distributed identically. Then we could simply sample each random variable, and run jobs in order of their
value of XJ .

A simple choice is to de�ne P (XJ ≤ c) = e−tf(c) for any real number c, where t is the running time of
job J , and f is a decreasing function of c with f(c)→ 0 as c→∞. Since this random variable depends only
on the job's runtime, we will henceforth denote such random variables as Xt for a job with runtime t.

Surprisingly, this new formulation is equivalent to our original random stack algorithm. To see this, �rst
consider the case where all job sizes are integers. Then both formulations are equivalent to splitting every job
of size k into k jobs of length 1, putting these length-1 jobs in random order, and then running the original jobs
in order of their last length-1 job in the random ordering. (One can see that the random variable construction
is equivalent to this using the property that Xk is identically distributed to max(X1, X1, . . . , X1︸ ︷︷ ︸

k

).) One can

scale this argument to show the equivalence for rational job sizes as well, from which a continuity argument
proves it for all real job sizes.

4

4 The Online Setting

We turn now to the online case. In this model, each job J has a processing time t and a release time r.
It can lie about either of them, and it can break itself up into smaller jobs. Additionally, we only become
aware of a job's existence at its (declared) release time, and must make our scheduling decisions without any
knowledge of which jobs will be released in the future.

4.1 An Online Algorithm Allowing Preemption

In the easiest version of the problem, we allow preemption: that is, our schedule is permitted to pause a
job before it �nishes, and then resume it later. Like in the o�ine case, there is a natural greedy approach:
always work on the job with the least remaining processing time required. This gives an optimal solution.
However, this algorithm is not truthful, as jobs have strong incentives to break themselves up.

How can we �x this? We will use the random variable formulation of our o�ine algorithm from Section
3.2, generalized to the online case. We will choose f(c) = 1

c , yielding Pr[Xt ≤ c] = e−t/c.

Algorithm. Whenever we receive a job J with length t, assign it a priority xJ sampled from the random
variable Xt with distribution de�ned by Pr[Xt ≤ c] = e−t/c.
Always work on the uncompleted job with smallest priority. So when the algorithm receives a new job, it
may preempt the currently running job.
We only need to make scheduling decisions when a job is released and when a job completes.

Before we dive into the truthfulness and competitiveness of this algorithm, let us note three things about
it. First, if all release times are 0, the problem is exactly the same as the o�ine case, and our algorithm
is exactly the same as well! Secondly, though our algorithm's priority queue is very similar to that of the
(optimal) greedy algorithm, there is a subtle di�erence: in our case, priority is never recalculated. Even if a
job is almost �nished, it does not obtain a better priority, unlike in the greedy algorithm. Finally, like the
greedy approach, our algorithm uses O(n log n) time to schedule n jobs, because one can implement it with
a priority queue.

We now show that our algorithm is truthful.

Theorem 3. The proposed online algorithm is truthful.

Proof. Jobs have no incentive to lie about their release times. Suppose job Ji, with true release time ri, is
considering claiming a release time si > ri. This lie does not change the distribution of its priority (since
it's generated from a random variable based only on its reported runtime). Moreover, it may cause job Ji
to miss out on some machine time that it would have received between ri and si, and its treatment from si
onwards is exactly the same in both cases. Thus, all jobs will provide accurate release times.

Jobs also have no incentive to lie about their processing time. For any �xed relative ordering of the other
jobs, job Ji's completion time depends only on its position in that ordering. Getting a smaller priority simply
makes more blocks of time available to job Ji if it needs them, and thus can only decrease its completion
time. And as in the o�ine case, claiming a higher processing time is strictly worse for a job's priority:
essentially, for any job J , declaring a longer processing time strictly increases the probability that XJ > c
for all positive reals c. So all jobs are incentivized to provide accurate processing times.

Finally, jobs have no incentive to break themselves up. Let us �x a job J . Job J can choose to remain
in one piece, with release time R and processing time T . Call this Scenario 1. Alternatively, in Scenario
2, job J breaks itself up into m pieces j1, j2, · · · , jm with processing times t1 + · · · + tm = T and all with
release time R. As discussed in Section 3.2, the value of the priority xJ is distributed in the same way as
max (xj1 , xj2 , . . . , xjm). So it su�ces to show that, given xj1 ≤ xj2 ≤ · · · ≤ xjm = xJ , and holding priority
values of all other jobs constant, Scenario 1 and Scenario 2 will result in the same completion time for job
J or all of its sub-jobs respectively.

5

The key point is as follows: at any point in time, the total remaining runtime of jobs with priority value
less than or equal to xJ must be exactly the same in either scenario. (Recall that we have �xed the priority
values of all jobs other than J , and xJ is the priority of J in Scenario 1 or the max across any of its sub-jobs
in Scenario 2.) This is because that total only changes in two ways: it continuously decreases at a rate of 1
while we process jobs, and it increases whenever we receive a job with priority ≤ xJ . These changes are the
same in Scenario 1 and Scenario 2.

Therefore, if our algorithm eventually completes all jobs with priority less than or equal to xJ , it must
do so at the same time T�n in either scenario. And since our algorithm completes the jobs of priority value
xJ only after all jobs with smaller priority, both Scenario 1 and Scenario 2 have completion time T�n when
xj1 ≤ xj2 ≤ · · · ≤ xjm = xt.

Furthermore, it's clear that jobs cannot bene�t from lying in a multiple ways (e.g. giving a longer
runtime, while also breaking itself up), because we can iteratively remove one lie at a time using our above
arguments without increasing the job's expected completion time.

This completes the proof of our online algorithm's truthfulness.

Remark. As in the o�ine case, we have actually proved a statement stronger than truthfulness. Namely, if
a job J splits itself into sub-jobs of the same total length, all with the same release time as J , then not only
does J not change its expected completion time, it does not even change the distribution of its completion
time.

4.2 Analysis of Competitive Ratio

Theorem 4. Our proposed online algorithm is 3-competitive when the objective is the sum of completion
times.

Proof. Let OPT denote the sum of completion times in the best possible schedule we could have made. We
bound OPT in two di�erent ways. First, we know that the completion time of job Ji is at least ri + ti, so
OPT is at least

∑
(ri + ti). Second, we know that lowering the release times only decreases the value of the

optimal solution, so we consider lowering them all to 0. Then the optimal solution is to process the jobs in
order of required runtime, which takes

∑
ti +

∑
i<j min(ti, tj) as shown in Section 3.1. Thus OPT is lower

bounded by this quantity as well.
To bound the expected performance of our algorithm, we observe that once a job is released at time ri,

only jobs with lower priority can preempt it. Thus,

Ci ≤ ti + ri +
∑

j where Jj has priority lower than Ji

tj .

Thus the expected value of Ci can be computed just as in the o�ine case in Section 3.1, so the expected
value of

∑
Ci is

∑
(ri + ti) +

∑
i<j

2titj
ti+tj

. Observe that this bound is tight when all ri are 0 (in which case

our algorithm is exactly equivalent to the o�ine version). Putting everything together, we see:

E
[∑

Ci

]
≤

∑
(ri + ti) +

∑
i<j

2titj
ti + tj

≤ OPT+ 2
∑
i<j

min(ti, tj) ≤ 3(OPT).

We conclude that our algorithm is 3-competitive, as claimed.

Therefore, we have presented an online, truthful, polynomial-time, 3-competitive algorithm for 1 |ri |
∑
Cj

in the case where preemption is allowed.

4.3 Modi�cation For Non-Preemptive Case

Now, what happens if we do not allow preemption? We use a trick that converts any k-competitive algo-
rithm using preemption to a 2k-competitive algorithm that does not require preemption, thereby achieving
a 6-competitive online algorithm that does not require preemption.

6

Consider any online preemptive schedule S0. We will convert it to a non-preemptive schedule S1 using
at most twice as much time, as follows. We run a simulation of S0. Whenever the simulated S0 completes a
job Ji of time Ti, we pause the simulation, and complete Ji for real. Then we unpause the simulation. Note
that this algorithm can clearly be done online. See the diagram below for an example.

Finally, we add the detail that if a job is released at time r, then even though our non-preemptive
algorithm becomes aware of the job at real time r, our algorithm doesn't take this information into account
until the simulation reaches time r. Essentially we are arti�cially shifting the release time back to keep
consistency with S0.

Lemma. S1 is always at worst 2-competitive compared to S0.

Proof. We'll use the phrase �imaginary time" to mean the time within the simulation. For example, if the
simulation runs for time 3, pauses for any amount of time, and then runs for time 4, we'll say that it is
currently imaginary time 7, regardless of how much time has passed in the real world.

It su�ces to show that the real time at which a job completes in S1 is at most twice the imaginary time
at which it completes, since the imaginary time is the time at which S0 would have completed the job. But
observe that the di�erence between the real and imaginary completion time for a job Ji is just the runtime
of Ji, plus the sum of runtimes for all jobs that completed before Ji in S0. It's clear that this di�erence is
greater than or equal to the completion time of Ji in S0, because Ji cannot complete in time less than its
own runtime plus the sum of runtimes of jobs that are completed before it in S0. (It can, however, complete
in longer time, if some idle time was required due to release times, or if some other jobs were started but
not completed.) Therefore, the di�erence between the real and imaginary completion time for a job Ji is
less than or equal to the imaginary completion time of Ji. Thus, every job has real completion time at most
twice its imaginary completion time. The result follows.

Lemma. Our algorithm remains truthful.

Proof. This follows easily from the fact that the di�erence between real and imaginary time for the completion
time of a job Ji is just the runtime of Ji, plus the sum of runtimes for all jobs that completed before Ji in
S0, as described above. Jobs minimize this di�erence in time by minimizing the expected total runtime of
jobs that run before them. But observe that this quantity is minimized by minimizing the job's declared
release time and runtime, and is una�ected by splitting, as shown in the proof of Theorem 3. Therefore,
the expected di�erence in real and imaginary time is minimized exactly when the job's expected completion
time is minimized in the preemptive case, which is what the jobs were originally minimizing anyway. So the
non-preemptive algorithm remains truthful.

This demonstrates that our modi�cation of a preemptive schedule to a non-preemptive schedule worsens
our competitive ratio by at most a factor of 2 while remaining truthful. Therefore, using this trick, we can
modify our preemptive 3-competitive algorithm to achieve a non-preemptive 6-competitive algorithm which
is online and truthful, as claimed.

7

4.4 An Equivalent Random Stack-Based Formulation

Finally, we present the equivalent formulation of our online algorithm, obtained by generalizing our
original random stack algorithm (which randomly places jobs in a stack with probability proportional to
their size).

We store the order of all the jobs received so far (without discarding jobs from storage after completion).
How do we insert a newly-released job into this order? Suppose that we have received k jobs already,
numbered J1, J2, · · · , Jk, and given them the order σ(1), σ(2), · · · , σ(k). Suppose we now receive job Jk+1,
with processing time tk+1. To insert it, we do the following:

for each i from k downto 1:

with probability
tk+1

(tσ(1) + tσ(2) + · · ·+ tσ(i)) + tk+1
, insert job k + 1 after job σ(i) and return

insert job k + 1 before job σ(1) and return
Observe that by inserting a job into the stack this way, we match the probabilities from the o�ine case.

That is to say, the distribution of orderings that the o�ine algorithm produces for given jobs J1, J2, · · · , Jk
is the same as the distribution that the online algorithm produces when inserting the Ji one by one. This
can be seen by a trivial inductive argument. Again, note that we never remove completed jobs from the
ordering (even though doing so would still preserve the algorithm's truthfulness), so that we get probabilities
which match the o�ine setting.

Since the online generalizations of our two o�ine algorithms generate the same distributions of �nal order-
ings as their equivalent o�ine versions, the two formulations remain equivalent in the online case. However,
note that in the random variable formulation of the online case, there is no need to keep track of previously
completed jobs in order to preserve the same distribution of orderings as in the o�ine case; therefore, we
can simply discard completed jobs from storage. Moreover, the natural priority queue implementation of
the random variable formulation runs in O(n log n) time, while the online version of the equivalent random
stack formulation as described here would require O(n2) time.

5 Lower Bounds with LPs

In Section 3, we showed a 2-competitive algorithm for the o�ine setting. Now, we will prove a lower
bound:

Theorem 5. There is no 1.1292-competitive algorithm in the o�ine setting.

We will do this by formulating the problem as an LP, and then proving the following result by computer:

Claim. There is no 1.1292-competitive algorithm for our problem, even if the input jobs are all positive
integers that sum to at most 10.

5.1 Formulating the LP with no arti�cial waiting

In the o�ine model, we receive a multiset of job lengths, which we will usually denote by J throughout
this section. For example, J = {1, 1, 6} means receiving two jobs of length 1 and one job of length 6. We can
process that jobset in any of three di�erent orders: (1, 1, 6), (1, 6, 1), and (6, 1, 1). This ignores strategies
that insert arti�cial waiting time, e.g. �Process the length-6 job, wait 5 seconds, then process both length-1
jobs.� We'll later show how to handle strategies that wait in between jobs, but for now, let's only consider
strategies that never arti�cially wait.

De�ne P(1,6,1) to be the probability that, when given the jobset {1, 1, 6}, we choose to process them in
the order (1, 6, 1). De�ne PT for other tuples T analogously.

We claim that we can express the problem �Find the best competitive ratio Rratio� as an LP in the
variables PT and Rratio.

8

5.2 The constraints

First of all, probabilities are nonnegative and sum to 1:

For every jobset J ,
∑

orders T of J

PT = 1. Also, all PT ≥ 0.

Secondly, the algorithm must be Rratio-competitive:

For every jobset J ,
∑

orders T of J

[total waiting time for T] · PT ≤ Rratio · [optimal waiting time for J]

Finally, the algorithm must be truthful. For any jobset J and any job length j, the client submitting j
cannot do better by splitting j into any number of sub-jobs and/or padding extra runtime onto their jobs.
That is, for every J and every j1 + · · ·+ jk ≥ j,

∑
orders T
of J + {j}

[time until T processes j] · PT ≤
∑

orders T of
J + {j1, . . . , jk}

[time until T processes every ji] · PT .

This completes the LP for the case when there is no waiting in between jobs.1

5.3 Why wait? A motivating example

At �rst it seems useless to waste time by waiting. However, consider the following. Suppose you always
receive the jobset {1, 2}. It is tempting to always process it in the order (1, 2). But this is not truthful,
because then the length-2 job can improve its completion time by splitting into two length-1 jobs.

If the length-2 job splits into two length-1 jobs, then you receive the jobset {1, 1, 1}. When you process
these jobs, by symmetry, the length-2 job has a 1/3 chance of having completion time 2, and a 2/3 chance
of having completion time 3. So, its expected completion time is 8/3.

From this, one can calculate that to be truthful, one must process the jobs {1, 2} in the order (2, 1) at
least 1/3 of the time. It follows that the expected total waiting time for the jobset {1, 2} must be at least

13/3. Thus, the competitive ratio of any truthful algorithm on the input {1, 2} must be at least 13/3
4 = 13/12.

...
Or maybe not!
What if we do this?
• When given the jobset {1, 2}, we process them in the order (1, 2) with probability 5/6, and otherwise

process them in the order (2, 1).
• When given the jobset {1, 1, 1}, we process two of the jobs, wait for time 1/4, and then process the

last one.
One can check that this algorithm is truthful (for those two inputs) and has competitive ratio 25/24.

Wasting time actually helps!!

5.4 Handling algorithms that wait

The above LP does not handle algorithms that add arti�cial waiting times in between jobs.
It seems di�cult to formulate an LP taking waiting into account. Our original LP exploits the fact that

any jobset J can only be processed in �nitely many ways. So the set of mixed strategies for J is simply the

1There is a bit of trickery with the last constraint. What is the �time until (1, 6, 1) processes 1�? It is either 1 or 8, depending

on which length-1 job we process �rst. We take the convention that equal-length jobs are indistinguishable, thus the expected

time until (1, 6, 1) processes 1 is 4.5. This symmetry issue can get confusing but adds no theoretical di�culty, so we recommend

ignoring it on a �rst read of this paper.

9

convex polytope of all such con�gurations. But with waiting, there are uncountably many ways to process
any nonempty jobset.

Surprisingly, we will show that waiting can still be handled with an LP.
Given any jobset J and sub-multiset S ⊆ J , de�ne EJ,S to be the expected time, if we receive jobset J ,

for all jobs in S to complete. Truthfulness is then equivalent to the condition that for all jobsets J and all
j = j1 + · · · + jk, we have EJ+{j},{j} ≤ EJ+{j1,...,jk},{j1,...,jk}. Without the possibility of arti�cial waiting,
EJ,S is a linear combination of the probabilities PT . This made the original LP easy to write.

To handle waiting, we will show how to express EJ,S as a linear combination of the PT and a function of
the waiting times.

For any jobset J , any ordering T of J , and any 0 < i < |T |, de�ne wT,i to be the expected time,
conditioned on us receiving jobset J and choosing to process it in order T , that the algorithm waits between
jobs i− 1 and i. Also de�ne wT,0 to be the expected time the algorithm waits before processing the �rst job
in T .

Then each EJ,S takes the form

EJ,S =
∑

orders T of J

PT ·E [time until T processes every job in S]

=
∑

orders T of J

PT · (time spent completing jobs before S �nishes+ E [time spent waiting before S �nishes])

=
∑

orders T of J

PT · (constant depending on T + sum of the wT,i that appear before the last job in S) .

Observe that this last expression expresses EJ,S as a linear combination of variables of the form PT and
(PTwT,i). The only constraint on the variables (PTwT,i) is that they are nonnegative.

Using this method, we can solve our problem by writing an LP in the variables PT , (PTwT,i), EJ,S , and
Rratio.

5.5 Results of the LP

All of these constraints de�ne an LP in the variables PT and Rratio. To �nd the best competitive ratio
for our problem, one need only minimize Rratio in this LP. Unfortunately, the LP is in�nite-dimensional, so
we cannot solve it. Instead, we'll do the best we can: we'll pick �nitely many jobsets J , and relax the LP
to include only the constraints with those jobsets. Solving the relaxed LP, we thereby obtain a lower bound
on Rratio.

We considered only the jobsets J where the job lengths are positive integers which sum to ≤ 10. Even for
only these jobsets, the LP has 2959 variables. Given the extreme computational di�culty of this method, it
seems di�cult to explore jobsets of total length much more than 10 without additional tricks.

Using the program lp_solve [3], we obtained the LP lower bound Rratio ≥ 1.1292 Therefore, there
is no truthful algorithm for parallel adversaries in the o�ine case with competitive ratio 1.1292 or better, as
this is less than the optimal Rratio. This completes the proof of Theorem 5.

Of course, any lower bound on the o�ine setting also applies to the online setting.

6 Future Work

Our paper leaves several questions unanswered.
What is the best competitive ratio for parallel adversaries in the o�ine setting? In the online setting?

The gap between our upper and lower bounds is quite large, especially for the online setting, so we anticipate
that further progress can be made.

10

In addition, as we discussed, our competitive analysis of our algorithms may not be tight. Does our
o�ine algorithm have a competitive ratio better than 2? Does our online algorithm have a competitive ratio
better than 6?

We focused our e�orts on the single-machine setting. Is there a good de�nition of truthful for parallel
adversaries when the job processing server has multiple machines? In this setting, splitting jobs up into
smaller pieces is often helpful for scheduling them, so our de�nition of "lying" no longer corresponds to
undesirable behavior.

We could also analyze the case where jobs have di�erent weights, where the objective becomes sum of
weighted completion times. Jobs' weights could be either public or private; in the latter case, jobs would be
able to lie about their weights, as in [1].

Finally, all of our algorithms share the undesirable feature that clients can decrease the expected com-
pletion time for a job by submitting multiple copies of it. In many practical cases, this is not a problem,
since the user has to pay for all the additional copies. Nonetheless, the question remains: can we design
algorithms that are also truthful with respect to such copying adversaries?

References

[1] Eric Angel, Evripidis Bampis, Fanny Pascual, and Nicolas Thibault. Truthfulness for the Sum of Weighted
Completion Times, pages 15�26. Springer International Publishing, Cham, 2016.

[2] Eric Angel, Evripidis Bampis, and Nicolas Thibault. Randomized truthful algorithms for scheduling
sel�sh tasks on parallel machines. Theoretical Computer Science, 414(1):1�8, 2012.

[3] Michel Berkelaar and Jeroen Dirks et al. Lpsolve. http://lpsolve.sourceforge.net/5.5/.

[4] Noam Nisan and Amir Ronen. Algorithmic mechanism design. In Proceedings of the thirty-�rst annual
ACM symposium on Theory of computing, pages 129�140. ACM, 1999.

11

