
SprayLists: Provably Correct Approximate Priority Queues in a Shared
Memory Setting

Jerry Li

1 Introduction

An important data structure well understood in sequential settings is the priority queue, which supports
the following three operations: insert(x), which inserts an item with priority x, delete(x), which deletes the
item with priority x, and deleteMin, which deletes and returns the item with lowest priority.1 Fibonacci
heaps [4] support deleteMin and delete in amortized logarithmic time, and insert in constant time, running
times which are close to the information theoretic lower bound.

It is known that under the “wall clock” model of timing in the distributed setting, even queues have
a linear lower bound for some process ([3]). Thus, while there has been a lot of work on provably correct
priority queues in the distributed setting (see [2] for a survey), none of them have low collision rates, and
indeed, it is straightforward to give executions for which the above problem must occur. However, enforcing
the strict priority queue property in a shared memory setting is somewhat silly, as if there are p processes,
and all of them simultaneously call deleteMin, then one process must obtain the element with the pth lowest
priority at the time of the call anyways. This motivates us to instead consider approximate priority queues,
in which a deleteMin operation is only required to return anything amongst the Õ(p) elements with lowest
priority. A similar data structure was implemented by [1] in the sequential setting, where to get around a
similar information theoretic lower bound, they allow a small fraction of elements to become corrupted in a
Binomial-tree-like structure, which allows them to obtain O(log 1

ε) running times, if an ε fraction of inputs
are allowed to become corrupted.

We present a possible implementation of such an approximate priority queue that breaks the linear
lower bound, using a data structure called skip list ([8], [7], [10], [9]). We alter deleteMin to use a new
operation called spraying. We demonstrate the correctness of this operation, and that in a restricted model
of asynchronicity, spraying, and thus deleteMin, takes polylogarithmic time.

The rest of this report is laid out as follows. In section 2 we describe the model and skip lists in detail.
In section 3 we motivate and describe our spraying algorithms, as well as our model of asynchronicity. In
sections 4, 5, 6 we prove the correctness and efficiency of spraying, and finally in section 7 we give directions
of for future work.

1.1 Probabilistic Tools

We will need the two following, important inequalities.

Theorem 1.1 (The Union Bound). If for 1 ≤ i ≤ k, Ui is an event that occurs with probability pi, then

Pr

(
k⋃
i=1

Ui

)
≤

k∑
i=1

pi.

Theorem 1.2 (Chernoff Tail Bounds). Let Xi be independent random variables which take value in [0, 1],
for 1 ≤ i ≤ k, and let X =

∑
Xi and µ = E(X). Then for µ′ ≥ µ, and any δ ∈ [0, 1],

Pr(X ≥ (1 + δ)µ′) ≤ e−µ
′δ2/3,

and for any µ′ ≤ µ and any δ ∈ [0, 1],

Pr(X ≤ (1− δ)µ′) ≤ e−µ
′δ2/2.

1Often decreaseKey is used instead of delete, but since a decreaseKey can be implemented by a delete followed by an
insert, the two models are equivalent

1

2 Background

2.1 The Asynchronous Shared Memory Model

We describe this model somewhat informally. See [6] for a more thorough treatment. We assume that p
processes are operating on a shared set of registers, and in an atomic step, can perform a single read or write
operation on that register, and assume each register can hold a constant number of integers and pointers to
other registers. Each process may have additional local state, but a memory address in shared memory refers
to the same location no matter which process accesses it. A scheduler decides at each timestep which process
can perform a single operation on a register in the shared memory. Note that the scheduler may schedule
a single process to take many steps in a row. For any fixed execution, we say that the time that a single
processor takes during that execution is the number of steps that the process takes during the execution
before terminating. We treat this scheduler as adversarial. That is, given knowledge of the current state of
the system, it will try to schedule processes so that some process (or many processes) takes many steps to
finish.

It is known that, assuming no process failures, we can implement locks on the shared memory using
only read write registers, using algorithms such as Lamport’s Bakery algorithm ([5]) which guarantee a host
of nice liveness and safety conditions which we won’t mention. We will simply assume that locking is an
additional primitive operation.

The timing model we will use here is roughly based on the stall, or wall clock, model ([3]). Roughly, if we
imagine that all processes run simultaneously and at approximately the same speed, then the time spent by
a process is the time it takes waiting for locks, and the time it takes processing when it has the appropriate
locks.

2.2 Skip Lists

Skip lists, introduced by Bill Pugh ([8]), are probabilistic data structures which support insert(x), delete(x),
and search(x) in expected O(log n) time for x ∈ N, if there are n elements in the skip list. We develop and
analyze skip lists in sequential and shared memory models below.

If the set of inputs is static, then one way to support logarithmic time search would be to maintain the
elements in a sorted linked list, where every other element also has a pointer to the node two steps in front
of it, and every fourth element, in addition to the pointers it already has, also has a pointer to the node four
steps in front of it, and so on, so that every (2i)th element has a pointer to the node (2i) steps in front of
it. We say a pointer is a height k if it skips 2k−1 nodes, and we define the height of an element to be the
maximum height of any pointer coming out of that node. We also maintain a special element 0 which has
links to the first element of each height, and a NIL, so that the last pointer at each height points to NIL.
Notice that if this structure has n elements, the maximum height of any pointer is log n. Call such a skip list
with such a structure a perfect skip list. Given such a structure, it is straightforward to conduct search(x)
in O(log n) time, namely, starting at the top level pointers, scan until you find the largest element less than
x, then descend a height and scan using those pointers and repeat until at the height 1 pointers, at which
point either x is found or not, and return the appropriate value.

It is however too difficult to maintain a perfect skip list structure under inserts and deletes, however, by
randomizing we can maintain a structure with guarantees which are close enough to give expected logarithmic
time search. As above, each element is represented by a node which are sorted by increasing element size,
whose height is chosen randomly when the node is inserted. A node of height k has k forward pointers,
labelled 1, . . . , k, and we enforce that the ith pointer of any node is to the next largest node in the ordering
with height at least i. We still maintain a special 0 node which has pointers to the first element of each
height, with each pointer labeled with the height of the element it links to, and a NIL node at the end, and
the last node of every height k has its level k pointer point to NIL. A sample skip list is given in Figure 1.

Searching with this structure then can be done as above, starting from the top and doing the binary
search-like procedure as in the perfect skip list. To perform insert(x), we first randomly choose a height h
so that with probability 2i the height is i (this can be done by repeatedly flipping a coin and setting the
height to be the number of flips before we see a tails plus one). Then we perform a search(x) to find where
it belongs in the skip list, and for each level k ≤ h, we find the last element uk of height at least k before x

2

in the skip list, and change its height k pointer to x, and set x’s level k pointer to what uk’s height k pointer
pointed to.

We can then think of each height k element as belonging to k different linked lists, where the ith list
comprises of all nodes of height at least i and all height i pointers. This is clearly illustrated in the figure.
To perform delete(x), we perform search(x) and if it has height h, we simply remove it from all of the linked
lists of level k ≤ h.

Figure 1: A sample skip list, taken from [8]

Proposition 2.1. With probability 1− 1
k2 , the maximum height of any element in a skip list within the first

k elements of the skip list is 3 log k.

Proof. The probability that any element has height at least 3 log k is 2−(3 log k) = 1
k3 ; a union bound over

the first k elements then gives the desired result.

This demonstrates that we can assume that the maximum height of any element is O(log n) in a skip
list with n elements; hence if we can demonstrate that search(x) takes O(log n) time as well in expectation,
then insert(x) and delete(x) will also take O(log n) time in expectation as well, since they consist of a single
search operation, plus a constant number of operations for each height.

Proposition 2.2. In expectation, search(x) takes O(log n) time on a skip list with n elements.

Proof. Consider the amount of time spent by the algorithm searching at height k, for any k. For each step
at height k, it must be that the element we step to has height exactly k, since otherwise we would have
reached that element in the search at a higher height. Since an element which has height at least k has
height exactly k with probability 1/2, we conclude that since the number of steps we take at any height is
then distributed according to the number of times a fair coin must be flipped until an experiment fails, we
take a constant number of steps at each level in expectation. Since by Lemma 2.1 there are O(log n) levels,
we conclude that searching takes O(log n) time in expectation.

Given these operations on a skip list, it is trivial to implement a priority queue which supports expected
logarithmic time insert, delete, and expected constant time deleteMin. The first two operations are already
implemented, and deleteMin can be implemented by simply removing the front element of the skip list.
Since removing a single element takes constant time since in expectation any element has height 2, it takes
constant time.

2.3 Skip lists in a shared memory setting

Notice that each skip list operation is highly decentralized, that is, although we may have many simultaneous
reads, there is no one centralized location at which many writes occur, as compared to a structure such as
a binary tree, where if a remove happened at the root, many processes would try to concurrently access the
root, and thus would ultimately fail. We will limit ourselves here to mention that [7] demonstrates that skip
lists can be maintained in a concurrent setting, and that as long as lock contention of processes is low (i.e.,
few processes attempt to simultaneously remove the same item, and few processes attempt to simultaneously
insert nearby items), search, insertion, deletion operations can be done in a constant number of lock accesses.
Unfortunately, in a fully asynchronous model of computation, an adaptive scheduler, which can see the state
of the skip list and the coins already flipped before scheduling the next event, can force search over the list
to never terminate. Thus we will instead work in a restricted model of asynchronicity (see below).

3

3 The Spraying Algorithm

3.1 Spraying

The basic idea of spraying is straightforward: when performing deleteMin, to avoid collision it is unavoidable
that we return something amongst the Õ(p) items with lowest priority. One natural attempt would be to
simply choose one of the Õ(p) items with lowest priority uniformly at random, however, upon further
reflection it should be apparent that choosing uniformly at random from the first Õ(p) items in the shared-
memory setting is hard (at least, I can’t do it) while avoiding collisions.

Thus, instead, we use the randomness of the skip list to emulate such a procedure, by performing a
random walk on the skip list. We call our random walk procedure spraying. To perform a spray, a process
first starts at the front of the skip list, and at some initial height h. At each level, the process randomly
chooses to take some number of steps at that level, then goes down some number of levels, and repeats until
it is at the bottom of the skip list, at which point it returns the element it has landed on.

It remains to decide what parameters we use for our spraying procedure, namely, at which height we
start, what distribution to use to choose how far we go at each level, and how many levels to skip. We wish
for sprays to have four high-level properties:

1. Sprays take polylogarithmic time

2. Sprays don’t go too long.

3. Sprays don’t collide too much.

4. Sprays are distributed near uniformly on a large interval.

Call a skip list on which no removes have occurred due to sprays a clean skip list.
Consider what we must do on a clean skip list. We must start at some level h = log p + K for some

constant K, because at each level the spray can take at most polylogarithmic steps, since we want the whole
procedure to take polylogarithmic time (also otherwise it’d go to far at high levels, and would have too much
collision at low levels). Thus, if we started at some level h < α log p for some α < 1 then by a straightforward
calculation we will spray onto at most the first õ(pα) elements, which implies by the pigeonhole principle
more than a constant fraction of all processes must fail if all processes p simultaneously spray, which is bad.
Alternatively, if we started at some level h > β log p for some β > 1 then even one step at the top level will
go to an element which in expectation is the pβth item from the front of the list, which is too far, since we
only want to spray amongst the first Õ(p) items. Thus our choice of h = log p as a starting height is justified.

We next seek to determine the distribution. Intuitively, at the lowest level we need to choose uniformly
between [1, c] for some c ≥ log p since in expectation, amongst the first Õ(p) elements in the skip list, there
will be at least a constant number of structures which consist of a group of log p+ O(1) consecutive items,
each with height 1. We can only reach items near the end of these structures by spraying approximately
log p steps at height 1, and we should prefer to choose all of these items uniformly, since they are all within
the first Õ(p) elements. Given this, and since we don’t want sprays to take more than polylogarithmic time,
we know that c should be polylogarithmic in p. While this logic doesn’t totally apply at high levels, it turns
out that choosing from [1, c] uniformly at random for some c which is polylogarithmic in p suffices.

The choice of how many levels to skip in one go is the most artificial of three. The natural choice of
going down one level at a time, combined with a choice of c = log p, yields PerfectSpray. Unfortunately,
this doesn’t give us good enough concentration bounds for the techniques we wish to apply, and we will be
primarily using PerfectSpray and the analysis of its performance on perfect skip lists as motivation for the
general proof techniques we apply on general skip lists. Instead we choose to skip log log p levels at a time,
and c = f(p) log3 p for any function f which increases to infinity.2 These parameters give us BasicSpray.
We give the pseudocode for BasicSpray below, the code for PerfectSpray is very similar and omitted.

However, there is one more problem, namely, we will not hit elements at the front of the list, which is bad,
given that we want a priority queue. Even if we allow sprays to stay where they by choosing uniformly from
[0, c] instead of [1, c], such a modified PerfectSpray would have probability (log p + 1)− log p ≤ p− log log p

2We need this f because we want p−c/ log3 p to grow slower than any polynomial in p; we can think of f basically as a large
constant

4

Algorithm 3.1 BasicSpray

x := 0.
k := log p/ log log p
while k > 0 do

Choose s← Unif [1, f(p) log3 p]
Walk x by s steps at level k
k ← k − log log p

end while
Choose s← Unif [1, f(p) log3 p]
Walk x by s steps at level 1
Return x

of hitting the first element, and BasicSpray would have a similarly small probability of hitting the first
element. To get around this, we simply “pad” the skip list, namely, add K(p) dummy entries in the front
of the skip list, where K(p) is some number we determine later. If a spray hits the first K(p) entries, it
is said to fail. We will need to choose K(p) so that with at most constant probability sprays will land in
the first K(p) entries of the skip list, and that in some reasonably large interval after the first K(p) entries,
every element is hit with probability Õ(p−1). By adding this behavior and adding retries for failed sprays
to BasicSpray we obtain our full spraying algorithm, FullSpray, given below.

Algorithm 3.2 FullSpray

K(p) := pf(p) log2 p
while true do

Run BasicSpray

if BasicSpray finishes then
Let x be the value returned
if x is not in the first K(p) elements then

Remove x
end if

end if
end while

Notation We introduce here a few terms that will be useful in the analysis of BasicSpray.

• We call the element with the pth lowest priority in the skip list the pth element in the skip list.

• We call the part of the spray consisting of the walk at level k log log p the kth level of the spray, for
k ≥ 1, and the part of the spray consisting of the walk at level 1 the 0th level of the spray.

• We let Ek denote the expected length the kth level travels if it travels log3 p steps, and let `p =
log p/ log log p, for k ≥ 1 and E0 = log3 p denote the length a spray at height 1 travels if it travels the
full distance. We know that Ek = 2k log log p−1f(p) log3 p on a clean skip list.

• We will say that an iteration of BasicSpray succeeds if it finishes and returns a non-dummy element.
Under the simplifying assumptions (see next section), if we can show that any given iteration of
BasicSpray succeeds with at least a constant probability, then with high probability FullSpray will
succeed in a constant number of calls to BasicSpray, thus condition (1) will be satisfied.

• Finally, we say a probability is negligible if it grows slower than any inverse polynomial. We will often
argue that the structure of the skip list follows some property, or some part of the algorithm will work,
except with negligible probability. Since we envision that applications of this data-structure will be in
algorithms where each process makes at most polynomially many steps, it follows that the number of
elements in the skip list is some polynomial in p, and thus the probability that the skip list doesn’t
follow this property, or some part of the algorithm will fail, is still negligible in n.

5

3.2 Simplifying Assumptions

Unfortunately I could not prove the results I wanted to in full generality in a fully asynchronous shared
memory model, so instead, we make a few assumptions, which I will often assume and forget to mention in
the rest of the paper.

A Simpler Model of Asynchronicity We consider a weaker, less asynchronous model of computation,
in which sprays can be scheduled to occur in rounds. We assume that the skip list is already populated.
Then, in the ith round of execution, we can specify any subset of processes on which to run BasicSpray

algorithms with, and after all these sprays run (in any asynchronous order), we can perform delete operations
at any element a spray landed. We penalize every process a f(p) log3 p factor for each round of execution
for spraying, since either that process is spraying during the execution or forced to wait for the next round
of execution. We also penalize each process a further polylogarithmic factor for each delete operation it
does. This requires a bit of justification, however, since spraying simulates uniform choice, and choosing
p elements uniformly at random out of O(p log3 p) buckets results in relatively few elements nearby, we
can demonstrate that if processes perform delete operations somewhat synchronously, they will finish in
expected constant time, and worst case polylogarithmic time. We purposefully ignore insert operations,
because unfortunately, if many inserts of nearby items occur, then an adversarial scheduler can very easily
cause a long chain of processes waiting for locks. However, if most real-world applications, where insert
operations look somewhat random, then by the same omitted analysis insert operations take polylogarithmic
time. Notice that if indeed at most a constant fraction of BasicSprays fail during any round (i.e. a constant
number collide), then in this model of computation, in logarithmically many rounds, p FullSpray operations
which started simultaneously will finish, and thus FullSpray still takes poly-logarithmic time per process.

Dirty Skip Lists are Clean We will assume that even after any number of sprays, the structure of the
skip list is distributed as the structure of a clean skip list. This is not clear, and not true for general remove
procedures. For instance, consider the naive remove procedure in which we remove the first element of height
log p that we find. After k such removes, the structure of the skip list has dramatically altered: in particular,
the first element of height log p has now distance roughly kn log p from 0 as opposed to distance n log p as
before.

However, this does not seem to happen with sprays. By what we prove below it is clear that a BasicSpray

on a clean skip list emulates (up to some small, inverse polynomial error) uniformly sampling from an interval
in the skip list. Since uniform sampling would not change the distribution of the structure of the skip list,
we expect that the distribution after one BasicSpray of the list will not differ too much from a clean skip
list; from here an inductive argument should suffice to argue that if we do at most polynomially (for some
small polynomial) many operations on the skip list, the error does not accumulate enough to change the
analysis. If we can somehow then clean the skip list by calculating new heights for every element in the skip
list every polynomially many steps (possibly deciding to do so in a randomized fashion), then intuitively
between cleans we should have the desired distributional properties of the skip list structure, and the cost
of the cleaning can be amortized away. However, I didn’t have time to figure out the details of this, and
it felt like it detracted from the point of the report, which is to demonstrate the nice combinatorial and
decentralized properties of spray operations.

The idea is that now, in this semi-realistic model of priority queues, the question of the effectiveness and
efficiency of spraying as an approximate deleteMin operation becomes an entirely combinatorial question;
namely, up to some padding of the skip list, do sprays choose near uniformly from the first Õ(p) elements
in a skip list, on a random skip list? Since this is not only an interesting question in its own right, as this
produces a decentralized way to near-uniformly sample from a set of points from the front of a priority queue
without knowing exactly what elements are in that set, but only the size of the set, but also because the
model described above seems to model reality fairly well,3 we seek to answer the question posed in the rest
of this report.

3Also because anything more general just doesn’t seem to work theoretically...

6

4 Sprays don’t go too long

Verifying property (2) is fairly straightforward (under our simplifying assumption). It follows almost trivially
from the following lemma.

Lemma 4.1. For k ≤ log p, the kth level of spray goes f(p) log3 p steps starting at any point will with

probability at most pO(α2 log2 p) go more than (1 + α)2k−1f(p) log3 p distance, for any bounded α > 0.

Proof. Fix some element x. Let XT be the number of elements with height at least k that we see in a
random walk of T steps starting at the xth element. We know that E(XT) = 2−k+1T . Choose T =
(1 + α)2k−1f(p) log3 p. Then by a Chernoff bound,

Pr(XT ≤ f(p) log3 p) ≤ e−O((α/(1+α))2f(p) log3 p) = p−O(α2f(p) log2 p)

so if we take T steps at the bottom level we will with high probability hit enough elements of the necessary
height, which implies that a spray at that height will not go more than that distance.

This immediately gives us the following.

Theorem 4.2. Let σ(p) = log p/(log p−1). For any fixed α, if two sprays at level k are separated by distance

ασ(p)Ek, then except with probability p−O(α2f(p) log2 p), they will end up at different positions in the spray
list.

Proof. Consider the spray with at each level sprays the maximal number of steps. Clearly this spray goes
the farthest of any spray. Let xk denote the element at which spray ends up after it finishes its kth level for
0 ≤ k ≤ `p and x`p+1 = 0, and let dk be the distance that the spray travels at level k. For any k > 0, by
Lemma 4.1, we know that

Pr(dk > (1 + α)Ek) = Pr(The kth level of the spray starting at xk+1 goes further than (1 + α)Ek steps)

≤ p−O(α2f(p) log2 p),

so by the union bound, Pr(∃k : dk > (1 + α)Ek) ≤ p−O(α2f(p) log2 p) as well.
Thus, this worst case spray will, except with negligible probability, will not go more than

k/ log log p∑
i=0

dk ≤ (1 + α)

k/ log log p∑
i=0

Ei = α
1

2

2k log p− 1

log p− 1
f(p) log3 p ≤ α log p

log p− 1
2k−1f(p) log3 p = ασ(p)Ek

steps, as claimed.

Corollary 4.3. For any fixed α, sprays can go farther than ασ(p)pf(p) log3 p with probability at most

pO(α2f(p) log2 p).

5 An upper bound on the probability sprays hit an element

5.1 Analysis of PerfectSpray on a perfect skip list

We first give the following, motivating result. While the proof technique cannot apply to general skip lists,
the technique itself is interesting and provides nice intuition which motivated the proof for BasicSpray on
random skip lists.

Theorem 5.1. For any x in a perfect skip list, at most a 1
p fraction of PerfectSpray sprays will hit x.

Proof. Notice that any spray on a perfect spray list which sprays ai at level i lands at element
∑k
i=1 ai2

i−1.
Thus, for any x, it suffices to count the number of log p tuples (a1, . . . , alog p) so that 0 ≤ ai ≤ log p for all i

and
∑k
i=0 ai2

i = x. Note this corresponds to the sum where the ith ai is bit shifted i− 1 times to the left.
For each i, let aij denote the jth order bit of ai in the binary expansion of ai, and let xj denote the jth
order bit of x in its binary expansion. For any k, call a k-tuple (a1, . . . , ak) viable if there exists some log p

7

tuple (a1, . . . , ak, ak+1, . . . , alog p) so that
∑k
i=1 ai2

i−1 = x. Notice that for (a1) to be viable, it must be that
a10 = x0. Inductively, for all k ≤ log p, conditioned on choice of a1, . . . , ak−1, the only viable ak must have

ak0 +
∑k−1
i=1 ai(k−i) + ck = xk, where ck is a carry bit which depends only on ai for i < k, which implies that

at most half of the ak are viable, conditioned on choice of the previous ai. Thus,

Pr(spray hits x) = Pr((a1) viable)

log p∏
k=2

Pr((a1, . . . , ak) viable|(a1, . . . , ak−1) viable)

≤
(

1

2

)log p

=
1

p

as claimed.

Of course, this argument completely falls apart when applied to random skip lists, as it is incredibly
fragile. However, the ideas of “filtering” paths based on levels, and the backwards nature of the analysis,
where we proceed from the last step to the first step, can be seen in the analysis of BasicSpray below.

5.2 Analysis of BasicSpray on a random clean skip list

Fix any interval I = [a, b] for a, b ∈ N and a ≤ b. In expectation, there are (b − a)2k−1 elements in I with
height at least k in the skip list; the following lemma simply states that with high probability, we do not
deviate far from the expectation.

Lemma 5.2. For any fixed b and any height i, there are at most (1+β)(k+1)2i−1 items between the (b−k)th

item and the bth item with height at least i on a clean skip list, with probability at least 1− e−β2(k+1)/3, and
there are at least (1− β)(k + 1)2i−1 items, with probability at least 1− e−β2(k+1)/2.

Proof. Let Xi be the random variable which is 1 if the (b − k + i)th item has a bucket of height at least i,

and 0 otherwise, and let X =
∑k
i=0Xi. Since E(Xi) = 2−i+1 we have E(X) = (k + 1)2−i+1 and thus by a

Chernoff bound

Pr(X ≥ α(k + 1)2i−1 log3 p) ≤ exp

(
−β22−i+1(k + 1)

3

)
≤ e−β

2(k+1)/3.

The other direction follows from a Chernoff bound applied in the other direction.

Theorem 5.3. There is a constant C so that for any fixed x, except with negligible probability, the fraction
of sprays with land at x is at most C 1

pf(p) log3 p
.

Proof. For each k ≥ 1, define Ik = [x − ασ(p)Ek−1 + 1, x], and let tk denote the number of elements in Ik
with height k log log p. By Theorem 4.2, after a spray has finished walking on the kth level, if it is outside
Ik, it will hit x with probability at most p−O(α2f(p) log2 p). Thus, by a union bound, we conclude that if for
any k, the spray is outside Ik after spraying at level k, then with at most negligible probability it will hit
x, so we may assume that a spray will only hit x if for each k it is in Ik after spraying at level k. But the
probability that the kth level of any spray lands in Ik is at most tk/(f(p) log3 p) as we choose how far to spray

uniformly at random. By Lemma 5.2 we know that except with probability e−β
2(Ek+1)/3 = p−O(β2f(p) log2 p),

Ik contains at most (1 + α)(1 + β)σ(p)Ek−12k log log p−1 = (1 + α)(1 + β) 1
log pσ(p)f(p) log3 p elements with

height at least k log log p, hence tk/(f(p) log3 p) ≤ (1 + α)(1 + β)σ(p) 1
log p except with negligible probability,

for any fixed k. By a union bound over all log p/ log log p levels, this holds except with negligible probability
for all levels. If we choose α = β, by a further union bound, the fraction of sprays that land in I1 after the
first k level sprays is at most (

(1 + α)2σ(p)
1

log p

)log p/ log log p

8

except with probability p−O(α2f(p) log2 p). If we choose (1 + α)2 = (1 + 1
log p) so that α = σ(p)1/2 − 1, since

(log p)−
log p

log log p = 1
p , and

lim
p→∞

σ(p)log p/ log log p = lim
p→∞

(
1− 1

log p

)log p/ log log p

= 1

by ugly calculus, and

lim
p→∞

α log2 p = lim
p→∞

(√
log p

log p− 1
− 1

)2

log2 p =
1

4
,

by (less) ugly calculus as well, we conclude that except with probability p−O(f(p)), the fraction of sprays that
land in I1 is at most Cp−1 for some constant C which can be made arbitrarily close to one as p grows large.
Since conditioned on landing in I1, a spray must further land at x exactly, which happens with at most a

1
f(p) log3 p

fraction of these sprays, we conclude that a total of C 1
pf(p) log3 p

sprays land at x, as claimed.

Importantly, this demonstrates (under our simplifying assumption) that two BasicSpray sprays are
unlikely to collide.

6 A lower bound on the probability sprays hit an element

We wish to lower bound the probability of hitting the xth smallest item, for x in some reasonable interval
which we will define later. The technique is ultimately to make the estimates made above tight. Ultimately,
the technique we use to prove Theorem 5.3 is to define some critical region for each level of some fixed length,
and argue that (1) sprays hitting x must hit the critical region at each level, and (2) sprays in a critical
region at some level have a bounded probability of entering the next critical region. If we can redefine this
notion of critical region (for x in some appropriate interval) so that a tighter version of (2) holds, namely,
that every spray in a critical region at level k has the can enter every element of the critical region at level
k − 1, then intuitively, all the inequalities presented above are tight. Below, we formalize that intuition.

Fix some x. Let I0 = [x − log3 p, x − 1]. Then if x − log3 p ≥ 0 we know that if a spray lands in a
bucket in I0 at height 1 it has a log3 p probability of spraying to x. Let t0 be the number of buckets in I0
of height log log p. Inductively, for all k ≤ `p − 1, given an interval Ik−1 = [ak−1, bk−1] so that ak−1 ≥ 0
and tk−1 which is the number of elements in Ik−1 of height k log log p, then notice that there are, except

with probability p−O(β2 log2 p), at most f(p) log3 p elements in [bk−1 − 1
1+βEk, bk−1] with height k log log p,

by Lemma 5.2. Thus let ak = bk−1 − 1
1+βEk and bk = ak−1 − 1, and let tk be the number of elements

in Ik = [ak, bk] of height (k + 1) log log p. Assume for now that ak ≥ 0. But then, any spray which lands
in any bucket in Ik after spraying at level k + 1 can reach every element of Ik−1 of height k log log p by a
spraying at level k, since there are at most f(p) log3 p elements of height k log log p in the interval [ak, bk−1]
and bk < ak−1. Thus, of the sprays that land in Ik after spraying at level k + 1, a tk/(f(p) log3 p) fraction
will land in Ik−1. Thus it suffices to compute what each tk is.

Lemma 6.1. Let sk = bk − ak + 1 be the number of elements in Ik. For all k ≥ 2, we have(
γ0 − γ1

1

log p

)
Ek ≤ sk ≤

(
γ0 + γ1

1

log2 p

)
Ek

with

γ0 =
log p

(β + 1)(log p+ 1)

γ1 =
β log p+ β + 1

(β + 1)(log p+ 1)
.

9

Proof. Define ξk to be the quantity so that sk = ξkEk. Clearly ξ0 = 1, and inductively,

sk =
1

1 + β
Ek − sk−1

=

(
1

1 + β
− ξk−1

log p

)
Ek

so

ξk =
1

1 + β
− 1

log p
ξk−1.

Homogenizing gives us a second order homogenous recurrence relationship

ξk =

(
1− 1

log p

)
ξk−1 +

1

log p
ξk−2

with initial conditions ξ0 = 1 and ξ1 = 1
1+β −

1
log p . Solving gives us that

ξk = γ0 + γ1

(
− 1

log p

)k
.

Notice that ξ2k+2 ≤ ξ2k and ξ2k+3 ≥ ξ2k+1 and moreover, ξ2k+1 ≤ ξ2k′ for any k, k′. Thus for k ≥ 2 the
maximum of ξk occurs at k = 2, and the minimum occurs at k = 1. Substituting these quantities in gives us
the desired results.

Theorem 6.2. There are constants K,C ′ > 1 which for p sufficiently large can be chosen arbitrarily close
to 1 so that for all x ∈ [Kp log2 p, 1

1+β pf(p) log3 p], except with negligible probability, at least a C ′ 1
p log3 p

fraction of BasicSpray sprays land at x.

Proof. The arguments above are precise, as long as (1) every element of Ik−1 can be reached by a spray from

0 at level k and each ak ≥ 0. By Lemma 5.2, condition (2) holds except with probability p−O(β2f(p) log2 p).

Moreover, each ak ≥ 0 is equivalent to the condition that x ≥ log3 p+
∑`p−1
k=1 sk, but by Lemma 6.1, we have

that (except with probability p−O(β2f(p) log2 p)) that

`p−1∑
k=1

sk ≤
(
γ0 + γ1

1

log2 p

)`p−1∑
k=1

Ek

 .

For the choice of β = 1
log p , the first term in this product can be made arbitrarily close to one for p sufficiently

large, and thus for some constant D, we have that except with negligible probability,

`p−1∑
k=1

sk ≤ Df(p) log3 p

`p−1∑
k=1

2k log log p−1

 = O(pf(p) log2 p),

in fact, if we were to do the calculations carefully, the constant term the big-Oh hides can be made arbitrarily
close to one for p sufficiently large.

By Lemmas 6.1 and 5.2 and by a union bound, we have that except with probability p−O(β2f(p) log2 p),

tk ≥
1

log p

(
γ0 − γ1

1

log p

)
f(p) log3 p,

for all k. Thus by the logic above, if we let Ek denote the event that the spray is in Ik right before spraying

10

at that level, we have

Pr(spray hits x) ≥ Pr(spray hits x|I0)

`p−1∏
k=1

Pr(Ik−1|Ik)

Pr(I`p−1)

≥ 1

log3 p

`p−1∏
k=0

tk

f(p) log3 p

≥ 1

log3 p

((
γ0 − γ1

1

log p

)
1

log p

)`p
.

If we choose β = 1
logn , then by some maximally ugly calculus, one can show that

lim
p→∞

(
γ0 − γ1

1

log p

)`p
→ 1,

we conclude that a C ′ 1
p log3 p

fraction of sprays hit x, for some constant C ′ which can be chosen arbitrarily

close to 1 for sufficiently large p, except with negligible probability.

This theorem demonstrates that except with probability roughly O(log2 p
p), we will land in this interval

I = [Kp log2 p, 1
1+β pf(p) log3 p], and thus (under our simplifying assumption) FullSpray will not fail because

of failing to travel sufficiently far except with very small probability. Moreover, along with Theorem 5.3,
we get matching lower and upper bounds in this interval, which demonstrates our claim that in I, spraying
approximates uniform selection up to a relatively small error, which intuitively justifies our simplifying
assumption.

7 Conclusions

We have described a new data structure for approximate priority queues in a shared memory model of
distributed computing, and proved its correctness and efficiency in a restricted model of computation. Our
new algorithm, in this limited model, runs in poly-logarithmic time, and is guaranteed, except with negligible
probability, to return elements from within the Õ(p) elements with smallest priority, moreover, simulates up
to a small error, uniform sampling from the skip list from the first roughly O(pf(p) log3 p) elements of the
priority queue, while being relatively oblivious to the state of the priority queue.

7.1 Future Work

Analyzing Dirty Skip Lists It should be possible remove the first simplifying assumption, that skip
lists that have been sprayed upon still are structured like clean skip lists, through the amortized “cleaning”
operation suggested in Section 3.2 should suffice. However, the analysis of the dirty skip lists seems nontrivial,
and at the very least, very ugly, although intuitive and well-motivated.

Analysis of PerfectSpray We conjecture that PerfectSpray, or some variant which still runs in O(log2 p)
time also has the same distributional properties as BasicSpray on random clean skip lists. Simulations of
PerfectSpray sprays on random skip lists in MATLAB seem to suggest so, at least. As a first step, it should
be possible to, with more care, demonstrate that in some interval near the front of a perfect skip list of size
roughly O(p log2 p), every element is hit with uniform probability.

7.2 Acknowledgments

The idea of spraying came from Dan Alistarh and Justin Kopinsky, and the author is grateful for their helpful
feedback in the analysis of these sprays. The author would also like to thanks Nir Shavit for his supervision
and insight throughout this research.

11

References

[1] Bernard Chazelle. The soft heap: an approximate priority queue with optimal error rate. J. ACM,
47(6):1012–1027, 2000.

[2] Kristijan Dragicevic and Daniel Bauer. A survey of concurrent priority queue algorithms. In IPDPS,
pages 1–6, 2008.

[3] Faith Ellen, Danny Hendler, and Nir Shavit. On the inherent sequentiality of concurrent objects. SIAM
J. Comput., 41(3):519–536, 2012.

[4] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. In FOCS, pages 338–346, 1984.

[5] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem. Commun. ACM,
17(8):453–455, 1974.

[6] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[7] William Pugh. Concurrent maintenance of skip lists. UMIACS Technical Report.
[8] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM, 33(6):668–676,

1990.
[9] Nir Shavit and Itay Lotan. Skiplist-based concurrent priority queues. In IPDPS, pages 263–268, 2000.

[10] Nir Shavit and Asaph Zemach. Scalable concurrent priority queue algorithms. In PODC, pages 113–122,
1999.

12

