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Abstract

In this paper, we will survey recent progress on the preemptive online machine minimization problem.
The goal of this machine minimization problem is to determine a feasible schedule for preemptive jobs
on a minimum number of parallel machines for jobs with hard deadlines. In the online version of the
problem, a job is not visible until its release date, and “preemptive” means a job can be stopped and
reassigned to any machine later without losing the processing it has already received. We introduce two
basic greedy algorithms, which do not do well on this problem, and analyze two recent algorithms both
proposed by Chen et al. [4, 2], which achieve good competitive ratios.

1 Introduction

1.1 Problem Definition

In the machine minimization problem, we are given a set of n jobs, {1, . . . , n}. Each job j ∈ {1, . . . , n} has a
processing time pj ∈ N, a release date rj ∈ N, which is the earliest possible time at which the job can be
processed, and a deadline dj ∈ N, by which it must be completed. The goal is to use a minimum number of
machines such that there is a feasible schedule in which no job misses its deadline. In a feasible schedule,
each job j is scheduled for pj units of time within its time window I(j) = [rj , dj). Each machine can
process at most one job at any time, and no job can be simultaneously processed on more than one machine.
In the online version of the problem, a job is not visible until its release date. Machine minimization is
essential to minimizing resource usage and achieving economic, environmental, and social goals.

In this paper, we introduce algorithms for preemptive online machine minimization. Here “preemptive”
means that the scheduler is allowed to interrupt the processing of a job (preempt) at any point in time and
put a different job on the machine instead. The amount of processing a preempted job already has received
is not lost. A preempted job can resume on any machine, and only needs to be processed for its remaining
processing time. We analyze the algorithm’s performance by competitive analysis. Throughout the paper,
we denote by m the number of machines used by an optimal offline solution, or equivalently, we say m is
the optimal offline cost. Given a set J of jobs, we use m(J) to denote the optimal number of machines to
schedule J (in the offline sense).

1.2 Structure of the Paper

In Section 2, we show two basic greedy algorithms for dealing with online machine minimization problems,
namely the Earliest Deadline First (EDF) algorithm and the Least Laxity First (LLF) algorithm. We show
that the competitive ratio of EDF is infinite, and the competitive ratio of LLF is worse than a constant
[7]. In fact, it has been proven that LLF is Ω(n1/3)-competitive and not f(m)-competitive for any function
computable function f [4, 2], which we will not discuss in detail. In Section 3, we transit from basic algorithms
to advanced algorithms. In Section 4, we introduce an O(log n)-competitive algorithm proposed by Chen et
al. [4], and in Section 5, we introduce an O(logm)-competitive algorithm [2], invented by the same authors
one year later. So far O(logm) is the best upper bound on the competitive ratio. In Section 6, we briefly
summarize the two new algorithms proposed by Chen et al., and hint a few possible extensions.
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1.3 Related Results

There are some variants of the problem that we are not going to discuss in detail in later sections of this
paper. One variant is the machine minimization for non-preemptive jobs in which it is necessary to keep
a job on a machine, once started, until its completion. In general, this problem is hopeless in terms of
competitiveness. In fact, Saha [8] showed that there is no algorithm with competitive ratio f(m) for any
computable function f . The case where every job has unit processing time, i.e., pj = 1, j = 1, . . . , n, has been
shown to have an e-competitive algorithm using the Earliest Deadline First (EDF) algorithm [1, 6]. However,
for jobs with unit processing time, there is no difference between preemptive jobs and non-preemptive jobs.

Another variant of the problem is the machine minimization for preemptive non-migratory jobs, where
“non-migratory” means each job is processed by exactly one machine, i.e., a preempted job can only resume
on the machine it started with. In practice, while migratory schedules may be easier to design and have
a better performance, it may also cause a significant overhead in communication and synchronization, and
increase the risk of cache-failures, so non-migratory schedules are preferred. Assuming pj , rj , dj ∈ Q instead
of N, Chen et al. [3] showed that there is an example of n jobs, which can be processed by a non-migratory
offline schedule on m machines, but any (deterministic) non-migratory online schedule requires at least
Ω(log n) machines. This result tells us about the power of migration, which may help explain the superior
performance of the O(logm)-competitive algorithm over the O(log n)-competitive algorithm.

2 Basic Greedy Algorithms

2.1 Earliest Deadline First (EDF)

We start with the Earliest Deadline First (EDF) algorithm.

Algorithm 2.1 (EDF [6]). Suppose we have m(t) available machines at time t. Then EDF schedules the
m(t) available jobs with the earliest deadlines, where “available jobs” means released but not completed jobs.

EDF works well for certain instances, for example when jobs have unit processing time, i.e., pj = 1,∀j,
because the penalty for doing the wrong job is very low. However, EDF easily fails on jobs with arbitrary
processing time, as shown by the following theorem.

Theorem 2.1 ([7]). For any n, there exists a set of n jobs that causes EDF to fail on < n machines, given
that m ≥ 2.

Proof by picture. Consider the following set of n jobs all released at time 0: 1 large job due at time n with a
processing time of n; and n−1 small jobs due at time n−1 with processing time of 1. EDF does not provide
a feasible schedule on fewer than n machines because it prioritizes the small jobs, but a feasible schedule
exists for m = 2 machines.

Intuitively, EDF performs poorly on this input because it fails to discern that the large can only be
delayed by a short amount of time. On the other hand, each of the small jobs can be can be delayed for
quite a long time. We formalize this useful concept below.

Definition 2.1. For each job j, we define its laxity lj = dj − rj − pj as the maximum amount of time that
the job can be put off without missing its deadline.

We can view the laxity of a job as the maximum “budget” for delaying a job. Whenever a job is not
processing during its time window, its budget is charged by the amount of this delay.
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2.2 Least Laxity First (LLF)

Now that we have the distinction between jobs with more laxity and jobs with less laxity, a logical improve-
ment on EDF would be to schedule the jobs with less laxity before the ones with more laxity. This is the
basis of the Least Laxity First (LLF) algorithm, which was the best known algorithm for this scheduling
problem until recently [7].

Algorithm 2.2 (LLF [2]). Suppose we have m(t) available machines at time t. Then LLF schedules the
m(t) available jobs with the smallest laxities.

While better than EDF, LLF is still vulnerable to certain inputs.

Theorem 2.2 ([7]). LLF is ω(1)-competitive; for any integer c, there is a sequence of inputs for which LLF
fails to find a feasible schedule on cm machines.

Proof by an example. We give a loose sketch of the proof when c = 2,m = 2 and LLF fails to find a feasible
schedule on 4 machines. Let y be a large constant. Consider the following job set: one 4y-length job with
release time 0, deadline 5y and therefore laxity y; and y − 4 sets of 4 small jobs with processing times of 1,
time windows of length 4, and laxity 3, which are released at times 0, 4, 8, ... 4y − 16. Since y is a large
constant, the smaller jobs are always prioritized by LLF and delay the large job. Therefore, the optimum
schedule completes the jobs by time 4y, but LLF needs y − 4 of extra time as shown in the picture below.

Since LLF still has to process its large job in time [4y, 5y] while the optimal schedule is free, at time
4y, we present both algorithms with a scaled-down version of this same job set (i.e. with y′ = y/5) that
falls in the interval [4y, 5y]. Again, the optimal algorithm will finish before LLF does. We recursively add
scaled-down job sets in this manner until LLF is overloaded and cannot complete the all of the large jobs in
each scaled copy before the deadline 5y.

LLF performs poorly in this example because it only considers absolute remaining laxity, ignoring the
amount of time that jobs have already spent in the system. As a result, large jobs with large laxity can be
delayed until it is too late, in favor of processing batches of smaller jobs with smaller laxity.

3 Advanced Algorithms

Now we are sufficiently motivated to discuss the two recent algorithms of Chen et al. [4, 2]. These algorithms
overcome the limitation of LLF by considering laxity in relative instead of absolute terms. Specifically, they
attempt to keep the remaining laxity of each job above a certain fraction of its initial level. The first
algorithm has a competitive ratio of O(log n), which depends on the total number of jobs released. The
second algorithm achieves a competitive ratio of O(logm), which only depends on the optimal offline cost,
and is currently the best known algorithm for online machine minimization.

Both algorithms divide jobs into “loose” jobs (jobs with a small processing time relative to its entire time
window) and “tight” jobs and process them separately. Notice that these concepts depend on relative laxity
instead of absolute laxity. We make this notion clear with the following definitions:

Definition 3.1. A job j is α-loose if, for some α ∈ (0, 1), we have pj ≤ α(dj − rj) (alternatively, lj ≥
(1− α)(dj − rj)), and is α-tight otherwise. We also call α-loose jobs the flexible jobs and α-tight jobs the
critical jobs.
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The α-loose jobs are easily processed using EDF because of the following theorem:

Theorem 3.1 ([4]). If every job is α-loose, then EDF is 1
(1−α)2 -competitive.

We do not prove this theorem, but note that it makes sense intuitively because the penalty for processing
the wrong job is bounded when all jobs are loose.

Separately, the α-tight jobs are processed using more advanced schemes, which we describe in detail
below.

4 An O(log n)-Competitive Algorithm

This algorithm is a clever extension of the EDF algorithm. The basic idea is that we divide the α-tight jobs
into several groups so that there is a comfortable time buffer between adjacent jobs in the same group, with
more critical jobs put in smaller groups. Each group is scheduled on a different machine using EDF. Because
of the buffer, earlier jobs do not delay later jobs significantly relative to the amount of laxity that the later
jobs have, so no job spends so much of its laxity that it becomes problematic when more jobs are released.
This allows the algorithm to achieve a competitive ratio of O(log n), which is superior to the standard EDF
and LLF algorithms.

4.1 Description of Algorithm

Algorithm 4.1. Choose some 0 < α < 1/2. Since jobs that are α-loose can be processed by EDF on separate
machines, we focus on processing only the α-tight (i.e. critical) jobs. Let Xt denote the pool of critical jobs
at time point t, and suppose that t is the release date of some α-tight job. At the start of a time interval
[t, t + 1), we obtain Xt from Xt−1 by adding any new α-tight jobs and removing jobs that are no longer
available or that have become α-loose. Those jobs that are α-loose are transferred to the other pool, which
we call the “safe” pool, to be processed by EDF. We divide Xt into groups as follows. First, we sort the
jobs in Xt by their deadlines. Then starting from the job with the latest deadline, we assign each job j to
an arbitrary group S provided that dj − t ≤ mink∈S lk(t), where lk(t) denotes the remaining laxity of job k
at time t, i.e., we only assign j to S if the other jobs in S have enough laxity to be delayed until after j’s
deadline. If no such S exists, then we create a new set for this job. Repeating those process for all the jobs,
we end up with ht groups, S1, . . . , Sht , such that the jobs in each Si can be temporally distributed as shown
to the left part of the figure below. Note that each Si can feasible be scheduled on one machine.

This next step is key. For each Si, instead of scheduling the jobs on one machine, we rank the jobs j1 . . . j|Si|
by their deadlines from latest to earliest and distribute them between µt = O(log |J(t)|) machines as shown
in the right part of the figure above, where J(t) is the set of jobs released by time t. Specifically, each ji is
assigned to machine ((i − 1) mod µt + 1). This step is important because it ensures that later jobs do not
lose too much of their initial laxity waiting for earlier jobs to finish, since there is always some laxity buffer
between adjacent jobs. We then schedule and process the jobs on each machine using EDF. If a job becomes
α-loose, we remove it from its machine, transfer it to the safe pool, and continue to process the critical jobs
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on their current machines. If a new α-tight job is released, we recompile the pool of critical jobs and restart
the process of assigning jobs to machines.

4.2 Analysis of Algorithm

Theorem 4.1 ([4]). The algorithm described above is O(log n)-competitive.

Let L be the set of α-loose jobs that enter the safe pool, and let m(L) be the optimal number of machines
for processing L. By Theorem 3.1, we will use O(m(L)) machines to process the safe jobs. To process
the critical pool, we use htµt machines between adding new jobs, so the number of machines it needs is
maxt(htµt). So the total number of machines we need is O(m(L) + maxt(htµt)).

The outline of the proof is as follows. If we choose µt just large enough (= O(log |J(t)|) = O(log n)) every
time we construct new groups of jobs, then the jobs in each Si can be assigned to µt machines so sparsely
that the laxity of each job at any time t never drops below a constant fraction β of its initial value (Lemma
4.2) Decreasing all jobs’ laxities by at most a factor of β increases the optimal offline cost by at most a
constant factor O(1/β) (Lemma 4.3). Finally, we use this to upper bound m(L) and ht by O(m/β) = O(m),
which gives the desired result that the algorithm succeeds on O(m log n) machines.

Lemma 4.2 ([4]). For some µt = O(log |J(t)|), we have lj(t) ≥ βlj for some β ∈ (0, 1), for all times t and
jobs j ∈ Xt.

Proof. In order for the laxity of some job j to be reduced, j must be delayed in favor of processing another
job. Since the jobs assigned to each machine are scheduled by EDF, job j is delayed for the time it takes to
run jobs with earlier deadlines that have been assigned to the same machine.

Let Si = {j1, j2, ..., j|Si|}, where the ji are ranked by their deadlines from the latest (j1) to the earliest
(j|Si|). If jk directly precedes ji in the same machine, then k = i+ µt, and we can bound the time window
length of jk by djk − t ≤ (1 − α)µt−1 · lji(t), which is obtained by repeatedly applying the two inequalities
dji+1

− t ≤ lji(t) (by construction of Si) and lji(t) ≤ (1−α)(dji − t) ≤ (1−α)lji−1
(t) (since jobs are α-tight).

This is illustrated in the figure below, with ji = J1, jk = J4 and µt=3.

Choosing µt = c log |J(t)|+ 1, for c > 2 log(1/(1− α)), gives us (1− α)µt−1 ≤ |J(t)|−2, where J(t) is the
set of all jobs released by time t. Substituting this into the inequality yields an upper bound on the window
length of job jk, which upper bounds the delay of job ji:

delay(ji) ≤ djk − t ≤ (1− α)µt−1 · lji(t) ≤ (1− α)µt−1 · lji ≤
lji
|J(t)|2

.

Since we recompile whenever new jobs are released, to bound the total delay of ji, we sum the delays over
all possible values of J(t) from 2 to n. (We exclude |J(t)| = 1 since if there is only 1 job, then there is no
second job to delay it.) This gives us:

total.delay(ji) ≤
n∑

|J(t)|=2

lji
|J(t)|2

<

∞∑
|J(t)|=2

lji
|J(t)|2

< 0.65 · lji
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ji is delayed by at most 0.65 of its initial laxity over the entire schedule, which means it always keeps at
least 0.35 of its initial laxity. Since ji was chosen arbitrarily, this concludes the proof with β = 0.35.

Now, we claim that decreasing all jobs’ laxities by at most a factor of β increases the optimal number of
machines by at most a constant O(1/β). This is the most important and challenging proof of the paper, so
in places, we have greatly simplified the argument.

Lemma 4.3 ([4]). Suppose we decrease the laxity of every job j ∈ J by a factor of β by “trimming” it
from the left. Specifically, let trimmed job jβ ∈ Jβ have processing time pj, release time rj + (1− β)lj, and
deadline dj. Then the inequality m(Jβ) ≤ m(J)/β holds, where m(Jβ) and m(J) are the optimal number of
machines for scheduling the given job sets Jβ and J respectively.

Before proving the lemma, we first provide a new characterization of the optimal number of machines
m(J) for any job set J . Suppose that for any time interval I, we are as “lazy” as possible, i.e. we use as
much laxity as each job has to offer to push its workload outside of the interval I. This gives us the following
very intuitive definition:

Definition 4.1. Let j be a job and let I(j) = [rj , dj) be the time window of j. Let |I| indicate the length
of an interval I (which does not have to be continuous). Then the minimum workload contribution of j
to a time interval I is defined as C(j, I) := max{0, |I ∩ I(j)| − lj}. In other terms, C(j, I) is the minimum
processing time that j must receive in the interval I, having used as much laxity as possible in this interval.

For any time interval I, even if we were to be as “lazy” as possible, we would still have to do
∑
j∈J C(j, I)

amount of processing to avoid missing any deadlines. So
∑
j∈J C(j, I)/|I| gives a lower bound on m(J), for

any interval I. The maximum over all such intervals I is still a lower bound on m(J). The following theorem,
which we state without proof, says that this lower bound is tight:

Theorem 4.4 ([4]). Let J be a set of jobs and m be the optimum number of machines. Then we have

m(J) =

max
I

∑
j∈J

C(j, I)

|I|


In other terms, if we were to consider every time interval and defer as much workload outside of this interval
as we can, then m would be the number of machines required for the worst time interval.

Proof of Lemma 4.3. Based on Theorem 4.4, there is some interval Iβ such that

m(Jβ) =


∑
jβ

C(jβ , Iβ)

|Iβ |

 .
i.e., Iβ is the worst interval for the trimmed job set Jβ . We are going to find some interval I such that
|Iβ | = β|I| and C(j, I) ≥ C(jβ , Iβ) for every job. This means that I is 1/β longer than Iβ but receives more
work from job set J than Iβ receives from job set Jβ . Therefore, Jβ must require no more than 1/β times more

machines than J . Algebraically, this is written as: m(Jβ) =
⌈∑

jβ
C(jβ ,Iβ)
|Iβ |

⌉
≤

⌈
1
β

∑
j
C(j,I)
|I|

⌉
≤ m(J)/β.

We show that we can get such an interval I by expanding Iβ to the left as follows (see figure below for
demonstration). We first represent Iβ as disjoint continuous intervals [a1, b1), [a2, b2), ...[ak, bk). Starting
from the rightmost interval, we try to expand it by a factor of 1/β by moving the left boundary to the left,
but stop if we encounter the next interval over: expanded[ak, bk) = [max{bk − (bk − ak)/β, bk−1}, bk). If we
are unable to expand this interval by 1/β, then we expand the next interval to the left by a factor of 1/β
plus the difference bk−1 − (bk − ak)/β. We iterate until we have expanded all the intervals by a total factor
of 1/β. Let I be the union of the expanded intervals, and note that we have |Iβ |/β = |I| as desired.
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Next, we show that C(j, I) ≥ C(jβ , Iβ) for every job. Recall C(jβ , Iβ) = max{0, |Iβ ∩ I(jβ)| − ljβ}, i.e.,
C(jβ , Iβ) is the minimum workload contribution of job jβ to the time interval Iβ . For each jβ , we need to
focus on the portion of Iβ that is relevant to it, so let K = Iβ ∩ I(jβ) (see figure below). If |K| ≤ ljβ , then
jβ does not have to be processed in K and C(jβ , Iβ) = 0, which makes the proof that C(j, I) ≥ C(jβ , Iβ)
trivial. Therefore, we focus on the case where |K| > ljβ , i.e., some of jβ must be processed in K.

Suppose we expand the set K to the left by a factor of 1/β in the same way that Iβ was expanded
before, and represent this expanded set as Kexp (see figure above for illustration of this section). Because
|K| > ljβ = βlj , then we have |Kexp| − |K| = ( 1

β − 1)|K| > (1 − β)lj , meaning that Kexp is K expanded

to the left by more than (1− β)lj . Recall that by definition I(j) is I(jβ) expanded to the left by (1− β)lj .
We claim that the expanded portion of K overlaps with I(j) by at least (1 − β)lj (see the figure above).
Therefore, we have |Kexp ∩ I(j)| ≥ |K|+ (1− β)lj .

Since Kexp ⊆ I, we get the result

C(j, I) ≥ C(j,Kexp) = |Kexp ∩ I(j)| − lj ≥ |K| − βlj = C(jβ , Iβ)

which concludes the proof.

Next, we claim that the number of groups S1, . . . , Sht that are formed using our algorithm is not excessive.

Definition 4.2. The residue of a job j at time t is a job with time interval [t, dj) and processing time pj(t),
the remaining processing time of job j at time t.

Lemma 4.5. At all times that we create new sets S1, . . . , Sht during the execution of the algorithm, we have
ht = O(m(Yt)), where Yt is the set of the residues of the critical jobs Xt at time t.

We omit the simple proof of this lemma in favor of an intuitive explanation. Recall that when we form
the groups Si from the job residues Yt, we try to pack as many jobs into each group as possible, with the
requirement that the jobs in each group can feasibly be scheduled on one machine by EDF (recall the figure
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of Si from the description of the algorithm). Since the jobs are α-tight, we can convince ourselves that this
packing does not waste too much space. Therefore, the number of groups Si that our algorithm forms is not
too far from the number of machines required for the optimal packing of Yt, which gives us ht = O(m(Yt)).

We are now ready to prove the main result.

Proof of Theorem 4.1. Recall from the beginning of this subsection that we need O(m(L) + maxt(ht · µt))
machines for the algorithm to work. We prove that this is O(m log n) if we choose µt > 2 log 1

1−α log |J(t)| =
O(log n).

According to Lemma 4.5, ht is bound above by O(m(Yt)). We now show that m(L) and m(Yt) are both
O(m). Recall that L is the set of jobs that enter the “safe” pool, consisting of those jobs that were either
α-loose upon release or later transferred from the “critical” pool. Also, recall that Yt is the residues of the
jobs in the “critical” pool at time t. Therefore, both L and Yt contain a subset of the original jobs J , with
the modification that some jobs may have been delayed or partially-processed in the “critical” pool, i.e., the
time windows of some of these jobs are “trimmed” from the left.

From Lemma 4.2, we know that based on our choice of µt, the laxities of the jobs in the critical pool
never fall below some constant fraction β ∈ (0, 1) of their initial values. It follows that L and Yt are no
harder to schedule than the original jobs if they were trimmed from the left by 1 − β of their laxity. Then
according to Lemma 4.3, both m(L) and m(Yt) are ≤ m(Jβ) = O(m/β) = O(m). This completes the proof
that the algorithm is O(log n)-competitive.

5 An O(logm)-Competitive Algorithm

We are finally ready to discuss the best known algorithm, which builds on the basic idea of LLF. Similar to
the O(log n)-competitive algorithm, this algorithm performs well because it attempts to keep the remaining
laxity of each job above a certain fraction of its initial level. Recall from Section 2.2 that LLF prioritizes
jobs with the least laxity, but sometimes jobs with large laxities can be delayed for too long. This causes
problems if urgent jobs keep arising and prevent these jobs from being completed on time. To overcome this
problem, Chen et al. [2] propose a method to intelligently distribute the total laxity of a job. When a job
is released, its laxity “budget” is divided into m′ + 1 “sub-budgets”, where m′ is the number of machines
we choose to use. A job that is waiting to be processed on a machine is prioritized once it depletes its
sub-budget for that machine, instead of having to deplete its entire budget. This way, no job is delayed for
too long or depletes too much of its initial laxity, which allows the algorithm to achieve a competitive ratio
of O(logm).

5.1 Description of Algorithm

Algorithm 5.1 ([2]). Choose some 0 < α < 1/2. Since jobs that are α-loose can be processed by EDF on
separate machines with O(1)-competitive ratio (Theorem 3.1), we focus on processing only the α-tight (i.e.
critical) jobs. At the start of the algorithm, we open some m′ = O(m logm) machines, numbered 1 through
m′. The choice of m′ will become clear in the later analysis. Whenever a new α-tight job j is released, we
divide its laxity into m′ + 1 equal “sub-budgets” of lj/(m

′ + 1) and assign each sub-budget to a machine.
Suppose we are to assign jobs to machines at time t. Let Xt be the available critical jobs at time t.

WLOG, Xt = {j1, j2, ..., j|Xt|} where rji ≥ rji+1
, i.e., the ji are sorted by release date from the latest (j1)

to the earliest (j|Xt|). To assign some job to machine 1, we start at the beginning of Xt and check the 1st
sub-budgets of the jobs in order. As long as the 1st sub-budget of the job is positive, we delay that job and
check the next job. Whenever we delay a job, we charge that delay to its first sub-budget. Once we find a job
ja(1) whose 1st sub-budget is 0, then we assign ja(1) to machine 1. Next, we find a job to assign to machine
2. We consider jobs that come after ja(1) in Xt and now we check the 2nd sub-budgets of the jobs in order.
Once we find a job ja(2) whose 2nd sub-budget is 0, then we assign ja(2) to machine 2 and charge the 2nd
sub-budgets of the jobs that we choose to delay. We continue assigning jobs to machines in this manner until
we have made a full pass through Xt (see figure below for demonstration).
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Once we have finished assigning jobs to machines, we “start the clock” on processing. All jobs that are not
assigned to machines have this time interval charged to some sub-budget, i.e. some sub-budget gets depleted
as processing time passes for the assigned jobs. Once the sub-budget of some job becomes 0 or there is an
event such as a job release or a deadline at time t′, then we “stop the clock” and repeat the assignment
process for Xt′ .

5.2 Analysis of Algorithm

Since this algorithm is O(logm)-competitive and opens all of its machines at the beginning, it requires prior
knowledge of the actual minimum number of machines m needed to process the input jobs (i.e. it is a
semi-online algorithm). We usually cannot get this information until after all the jobs have been released.
Fortunately, there is a doubling scheme which allows us to use any semi-online algorithm to solve the online
problem:

Theorem 5.1 (doubling scheme [5]). Given a f(m)-comptitive algorithm for semi-online machine minimiza-
tion, where f(·) is a non-decreasing function, there is a doubling-based algorithm that is 4f(2m)-competitive
for online machine minimization. (The only difference between the semi-online algorithm and the online
algorithm is that the semi-online algorithm knows the optimal minimum number of machines m in advance.)

Note: In [2], the doubling scheme is stated as “THEOREM 2.2: Given a ρ-competitive algorithm for semi-
online machine minimization, there is a doubling-based algorithm that is 4ρ-competitive for online machine
minimization”, the proof of which is given in [4], and the authors conclude that they “may assume that the
optimum number of machines m is known in advance by losing at most a factor 4 in competitive ratio”.
However, the proof in [4] doesn’t work in this case, because the competitive ratio is a function of m. Here,
we give a proof for a slightly difference result that is applicable to semi-online algorithms with non-constant
competitive ratios.

Proof. Let A(m) denote the f(m)-competitive algorithm for the semi-online machine minimization given the
optimum number of machines m. Let m(t) denote the optimum number of machines for the set J(t) of all
jobs released so far. So m(t) can be computed by the online algorithm at time t. Then our online algorithm
is

• Let t0 = minj∈J rj . For i = 1, 2, . . ., let ti = min{t|m(t) ≥ 2m(ti−1)}, i.e., ti’s are the time points
when the optimal cost m(t) doubles.

• At any time ti, i = 0, 1 . . ., open 2m(ti)f(2m(ti)) additional machines, and schedule all jobs with
rj ∈ [ti, ti+1) by the Algorithm A(2m(ti)).

Since during the time interval [ti, ti+1), the optimum number of machines m(t) ≤ m(ti+1) = 2m(ti),
A(2m(ti)) is sufficient to schedule all jobs with rj ∈ [ti, ti+1) using the 2m(ti)f(2m(ti)) additional ma-
chines. So the total number of machines is bounded by∑

ti

2m(ti)f(2m(ti)) =
∑

k:2k≤m

2 · 2kf(2 · 2k) ≤ 2(
∑

k:2k≤m

2k)f(2m) = 2(21+blog2mc − 1)f(2m) ≤ 4mf(2m).

Therefore, the competitive ratio of the online algorithm is 4f(2m).
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According to Theorem 5.1, if we can show that a semi-online algorithm is O(logm)-competitive, then
there is an online algorithm using the doubling scheme that is still O(logm)-competitive. Therefore, we just
need to prove the following theorem:

Theorem 5.2 ([2]). The (semi-online) algorithm 5.1 described above is O(logm)-competitive.

Recall that we only deplete from a sub-budget if it is positive. Therefore, no job’s budget becomes negative
over the course of the algorithm. The only way that the algorithm could fail is if some job’s (m′ + 1)-th
sub-budget reaches 0. If this does happen, then the algorithm fails because there is no machine to assign
that job to. To prove that this does not happen, we show that the maximum number of “intersecting” jobs
(i.e., jobs whose sub-budget is 0 and need to be assigned to a machine) is upper bound by O(m logm′) if
the algorithm fails, so choosing a large enough value of m′ such that m′ ≥ O(m logm′) ensures that the
algorithm never fails.

First, we give a new lower bound on the optimal offline cost m that depends on the number and laxity
of jobs covering a given time interval. Note that a job j is said to cover a time point t if t ∈ I(j) = [rj , dj).

Definition 5.1 ([2]). Let G be a set of α-tight jobs and let T be a time interval (not necessarily continuous).
We say that (G,T ) is (µ,β)-critical if for some µ ∈ N and some β ∈ (0, 1),

(i) each time point t ∈ T is covered by ≥ µ jobs
(ii) |T ∩ I(j)| ≥ βlj for any j ∈ G

Theorem 5.3 ([2]). Suppose (G,T ) is a (µ, β)-critical pair. Then

m = Ω(
µ

log 1/β
)

First, we explain intuitively why this bound makes sense. As µ increases, the number of jobs that cover
the same time interval T increases, so the optimal number of machines should increase as well. When β is
close to 0, this means that the |T | could be much smaller than the total laxity of the jobs, so the jobs might
have a lot of flexibility and the lower bound on the optimum number of machines is small. On the other
hand, when β is close to 1, this means that |T | is at least on the same order as the total laxity of the jobs,
so the jobs have less flexibility; as a result, the lower bound on the optimal number of machines is high.
Clearly, to get the tightest lower bound as possible, we would want to pick the largest µ and β that satisfy
the conditions.

The gist of the proof is as follows (see figure below). From the jobs in G, we can construct a sets of
pairwise-disjoint job intervals that overlap T . Condition (ii) gives us a sense of how much laxity these
intervals have on average, so we can pick a subset (specifically, µ/4) of these intervals (denoted I(Hi)) with
bounded laxity. Taking advantage of the bounded laxity of the intervals, we find one interval I(Hq) whose
index is q = O(m log 1/β), with the property that every larger interval has a significant workload contribution
to I(Hq). If q is much smaller than µ/4, then the interval I(Hq) will be overloaded with work, and it is not
possible to complete it with m machines. Therefore, q must be relatively close to µ/4. We can think of this
as q = O(m log 1/β) = Ω(µ/4), which gives us the theorem after some minor rearrangement.

Corollary 5.3.1 ([2]). Suppose (G,T ) is a (µ, β)-critical pair. Then µ = O(m log(1/β)) results directly
from Theorem 5.3.
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Proof of Theorem 5.2. Suppose that the set of jobs J fails on the above algorithm. Then we want to find a
subset of jobs and a set of time points (F, T ) that are responsible for the failure of j. We can look at the
history of the schedule to determine which jobs are responsible. When the algorithm fails, it is because the
(m′+1)-th sub-budget of some job j∗ ∈ J reaches 0. The (m′+1)-th sub-budget was charged whenever jobs
with lower indices than j∗ were occupying the m′-th machine. It follows that those jobs and the time they are
on the m′-th machine are responsible for the failure. Similarly, those jobs were being processed on the m′-th
machines only because their m′-th sub-budgets reached 0. Therefore, the jobs with lower indices occupying
the (m′ − 1)-th machine at the times that their m′-th sub-budgets were charged are also responsible for the
failure. Using this reasoning recursively, we arrive at a failure set (F, T ), where F includes all the jobs that
are responsible in the failure and T consists of all the times that the responsible sub-budgets of the jobs in
F were being charged.

We complete the proof by showing that (F, T ) is always a (m′+1, 1/(m′+1))-critical pair. Condition (ii)
of the definition is obviously satisfied, since each j ∈ F runs out of one sub-budget during T , implying that
|T ∩ I(j)| ≥ 1/(m′ + 1) · lj . Condition (i) is satisfied since each t ∈ T is covered by at least m′ + 1 distinct
jobs in F , and the proof of this is as follows. To make it more clear, we have also provided an illustration
below.

By definition, t ∈ T implies that there is some job ji in F whose i-th sub-budget is charged at time t.
Since the i-th sub-budget is charged only if i − 1 machines are being occupied by jobs with lower indices
than ji, then including ji we have i jobs that cover t. We now need to show that at least m′+ 1− i jobs with
higher indices than ji also cover t. Recall that the jobs are indexed by their release dates from the latest to
the earliest, so jobs with higher indices than ji are released before ji. Therefore, we just need to show that
m′ + 1− i jobs with higher indices than ji are still available at some time ≥ t. To do this, we trace a path
of jobs from ji to the job that ultimately causes the failure, jm′+1 and use backwards induction. For jm′+1,
the invariant is satisfied since at least 0 jobs in F with higher indices than jm′+1 are available at time ≥ t.
Now suppose that the invariant holds for all jk on the paths between ji and jm′+1, and we will prove that it
holds for ji. By definition of ji ∈ F , at some time t′ > t, job ji is being processed on the i-th machine, which
causes the k-th sub-budget of a higher index job, jk ∈ F , to be charged. Since the k-th sub-budget is only
charged if k − 1 machines are being occupied by jobs with lower indices than jk, and exactly i of those are
occupied by jobs with index ji or lower, then there must be k− i− 1 distinct jobs occupying machines with
indices between ji and jk at time t′. According to the induction invariant, there are m′ + 1 − k jobs with
indices higher than jk that are available at time ≥ t. Therefore, there are total of m′ + 1− i jobs in F with
higher indices than ji available at some time ≥ t, which completes the proof that condition (i) is satisfied.

Corollary 5.3.1 implies that for an input to fail on our algorithm, we must have m′ ≤ Cm log(m′) for a
specific constant C. But if we choose m′ = C ′m logm with C ′ � C, then this inequality no longer holds and
the algorithm cannot have a failure set. Therefore, for m′ = O(m logm), our algorithm feasibly schedules
all of the jobs.
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6 Discussion and Conclusion

In this paper, we analyzed two greedy algorithms (EDF, LLF) and two recent advanced algorithms for online
machine minimization for preemptive jobs [4, 2]. EDF performs poorly because it only schedules based on
deadlines, so it does not know to prioritize jobs with more laxity over jobs with less laxity. LLF improves
on EDF by scheduling the jobs with least remaining laxity. Unfortunately, the downside of LLF is that
some jobs can be procrastinated for too long. The recent algorithms by Chen et al. [4, 2] perform better
than EDF and LLF by considering laxity in relative rather than absolute amounts; these algorithms try to
keep the remaining laxity of jobs from dropping below a certain fraction of their initial levels. The O(log n)-
competitive algorithm accomplishes this by distributing the jobs across just the right number of machines, so
that jobs with earlier deadlines only takes up a fraction of the laxity of later jobs. The O(logm)-competitive
algorithm accomplishes this by dividing the laxity budget of each job into sub-budgets for each machine,
and prioritizing jobs every time they use up one of their sub-budgets. Therefore, each job only uses up a
fraction of its total laxity before it is prioritized for processing.

After analyzing these algorithms, we are left with three main questions. First, we are curious about the
main reason for the difference in performance between the O(log n) and O(logm) competitive algorithms,
given that they share the same general recipe for success in terms of managing laxity. We surmise that the
reason may be due to the forced migration of jobs under the O(logm) competitive algorithm. Since jobs are
indexed by their release dates, as jobs get older, they are forced to migrate towards higher-numbered ma-
chines, while lower-numbered machines usually service the most recent jobs. Under the O(log n) competitive
algorithm, however, jobs are indexed by deadline. It is possible for an adversary to provide a job set with
earlier and earlier deadlines, such that the jobs do not migrate much between machines. We hypothesize
that the forced migration of jobs by the O(logm)-competitive algorithm makes it better at distributing work
than the O(log n)-competitive algorithm, particularly when faced with challenging inputs.

The second question that we have is, in which situations is it actually worth it to apply these recent algo-
rithms. EDF and LLF are simple greedy algorithms that do not cost much resources to perform scheduling.
However, the O(log n) and O(logm)-competitive algorithms are much more computationally expensive. For
example, the O(log n)-competitive algorithm frequently checks for α-loose jobs to remove from the critical
pool of jobs. The O(logm)-competitive algorithm is a semi-online algorithm that is made to be an online
algorithm using the doubling scheme. Whenever a job is released, the offline optimum of the jobs so far must
be computed, which can get expensive over time.

The final question that we are left with after reading these papers is also the central question of 6.854,
which is – can we do better? It remains an open question whether there is a constant competitive online
algorithm. The authors of the two advanced algorithms believe there to be a deterministic one, although
they cannot show this. Our hunch is that the issues of managing laxity and forcing migration have already
been exploited in the O(logm)-competitive algorithm. Therefore, we might need to involve a different flavor
of strategy, such as randomization, in order to achieve a better upper bound.
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