
Algorithms and Data Structures in the noisy comparison model and
applications

Nishanth Dikkala, Anil Shanbhag, Emmanouil Zampetakis

Massachusetts Institute of Technology

Abstract

In contrast to classical computational models where every operation gives the correct answer always,
we consider models with noise introduced in the operations they perform. In particular we look
at the scenario when comparisions between elements turns noisy, i.e, gives the wrong result with
a small probability. In this setting, we present existing algorithms in literature for binary search
and sorting. We develop algorithms for finding the minimum among n elements and implementing
a noisy binary search tree. We also present various applications of the above algorithms to areas
such as learning theory, shortest paths in graphs with edge uncertainties and strategic voting.

Keywords: Algorithms, Noisy Comparisons, Uncertainty

1. Introduction

The classical design of algorithms and data structures assumes that the values of the items are
known accurately and any operation involving them, such as comparisons or arithmetic, always
returns the correct answer. This assumption doesn’t hold true in many real world scenarios where
the true value of object may not be known and hence comparisons between objects can return the
wrong result with some small probability. Consider for example a sport tournament, in this case
every time a match is played we have a winner but, there is always a probability that the weaker
team will win. So we can see every match as a noisy comparison with some probability of failure. In
settings like this we are interested in finding the best team or the complete ordering of all the teams.

The goal of this project is to study existing literature and design algorithms and data structures
which work well in presence of noise. We restrict ourselves to studying the following three problems
in a noisy setting :

1. Binary search for an item in a sorted array of items

2. Implementing a binary search tree

3. Sorting a set of items

Existing literature considers three different models for noisy setting. Note that, in all these
models, the true value of the items is unknown.

Email addresses: ndikkala@mit.edu (Nishanth Dikkala), anils@mit.edu (Anil Shanbhag), mzampet@mit.edu
(Emmanouil Zampetakis)

Preprint submitted to Advanced Algorithms December 10, 2014

1. Noisy Comparator Model: We are given a noisy comparison operator which takes as
input two items and produces a binary output. This comparator gives the wrong answer
with probability δ < 1

2 . The only operation allowed in this model is picking two items and
asking the noisy comparator which one is greater. If we repeat a comparison 2k + 1 times,
the probability that at least k of the comparisons give the wrong answer is at most εk where
ε is a function of δ such that 0 ≤ ε < 1. This will be shown precisely in Section 2.

2. Coin Flip Model: Every item i is a coin whose heads probability, pi, is unknown. We
can no longer compare elements directly. We are only allowed to toss the given coins and
answer questions regarding their heads probabilities. If we toss a coin i, 1/ε2 times, then the
probability that the estimated heads probability differs from pi by more than ε, is bounded
by a constant from Chernoff bound.

3. Noisy Input Model: In this model every comparison has a probability of failure δ. The
difference is that in this case by repeating a comparison we don’t get a better comparator
because the uncertainty comes from the input and therefore the comparisons are not inde-
pendent.

1.1. Guarantees of the results of the algorithms

It is obvious that in these models we cannot have algorithms that always work, because there
is always a probability, even though small, that all the comparisons of the algorithm went wrong.
So the guarantees provided in this work can again be of two forms:

1. Probability of wrong answer upper bounded. For instance it could be bounded by a constant
≤ 1

2 or by a function of the size of the input e.x. 1/n.

2. Given a number of samples, output the provable best solution, with respect to some objective
function, based on these samples.

For the binary search and sorting algorithms we have a guarantee of the first type. In the fourth
section we also consider a noisy sorting algorithm with guarantee of the second type. Although
these guarantees are incomparable, it is well accepted that the second guarantee is harder to achieve
than the first one.

1.2. Performance of the algorithms

The well-known measure that is used to measure the performance in the classical theory of
algorithms is running time of an algorithm. Apart from the total running time, in these models
it is sometimes reasonable to measure the performance of our algorithms based on the number of
samples that they use from the noisy comparisons. For instance, in the case of a sport tournament,
it is reasonable to not let an arbitrary pair of teams play each other more than one or two times.
We refer to this objective as the query complexity of the algorithm.

1.3. Roadmap

At first we present a naive reduction that can be used in order to transform an algorithm that
solves a problem using the classical comparison model, to an algorithm that solves with high prob-
ability the same problem in the noisy comparison model. After that we present our algorithm for
finding the minimum among n elements in linear time. Then we present our binary search tree
data structure that is based on the work of [1] in the noisy comparison model. Next we present an
optimal algorithm for binary search in the coin flip model based on the work of Karp and Kleinberg

2

[2]. Then we give some interesting applications of these models to the design of algorithms for some
problems in theoretical computer science. Finally we present an algorithm for sorting n elements in
the noisy input model based on the work of Braverman and Mossel [3] and state a nice application
of this to social choice theory.

In the appendix we have some proofs that are omitted from Section 5 of the paper and also
some results that we had developed on sorting algorithms before we noticed that there were some
better results in the work of [1]. These results include :

1. We develop a noisy Fibonacci heap with O(log log n) insert and O(log n log logn) delete amor-
tized runtime. The primary reason for developing such a heap is for its application in the
sorting algorithm we develop next.

2. Using the heap developed above, we give a sorting algorithm which takes O(n log n log logn)
time to output the sorted order with high confidence, which is the major contribution of this
paper.

3. Finally, we present a reduction of sorting to a heap with specific guarantees in order to
improve the time bound of the sorting algorithm to O(n log n log∗ n).

We start by stating the Chernoff bound that we are going to use throughout the paper

Lemma 1.1. Chernoff Bound[4] Suppose X1, X2, ..Xn be independent random variables taking
values in 0,1. Let X denote the sum of random variables and µ = E[X]. Then we have for any δ,

Pr(X − µ ≥ δµ) ≤ e
−δ2µ

3

Pr(X − µ ≤ −δµ) ≤ e
−δ2µ

2

2. Naive Solution

Every problem in the noisy setting has a classical analogue which is noise-free. In this section,
we show how we can derive a naive solution for a general comparision-based problem in the noisy
setting, using a polynomial-time solution to its noise-free analogue.

Lemma 2.1. Given a noisy comparator operator X which has error probability δ, it is possible to
create another noisy comparator operator Y which invokes X O(c log n) times and has an error
probability O(1/nc), where c is a constant.

Proof Let Y make 2k comparisons where k = c log n. The answer returned is the majority answer
among the k comparisons. This comparison has a wrong answer if greater than half the comparisons
returned the wrong result. By Lemma 1.1, this probability can be upper bounded by:

Pr[ΣXi > k] = Pr[ΣXi − 2kδ > k − 2kδ]

= Pr[ΣXi − 2kδ > (1/2δ − 1)2kδ]

< e−(1/2δ−1)
2kδ

< n−(1/2δ−1)
2cδ

�

3

Consider an algorithm which makes O(nc) comparisons in the worse-case to get the right solu-
tion. Now in the noisy setting, each of these comparisons can return wrong result with probability
δ. Let us repeat each of these comparisons O(c log n) times. By Lemma 2.1, each can go wrong
with probability O(1/nc). Since we are making O(nc) comparisons, by union bound over all the
comparisons we have that the order thus returned is wrong with a constant probability.

The naive solution leads to a multiplicative O((log n)c) factor in the running time of the algo-
rithm. In the rest of the paper, we will study or design algorithms which have better than log n
multiplicative factor.

3. Noisy minimum

The simplest thing to find given a comparison operator is the minimum/maximum. For the
noise-free case, this can be done trivially using O(n) comparisons. We present an algorithm to do
the same in noisy setting with O(n) time complexity which is strictly better than the naive solution
based on Section 2 which gives a O(n log n) solution.

The goal is to find the minimum of a set of elements given a noisy comparison operator (model
1). Given the set of n elements, we construct a tournament graph as follows. Create a leaf node
corresponding to every element. Construct a tournament tree over these leaves. Figure 1 shows
the graph for 8 elements. Each internal node of the tree contains the minimum of its children.
Hence the root of the tree represents the minimum. If we perform a single comparision to find
out the item at each internal node, the error probability scales with the depth giving an O(log n)
probability of failure. On the other hand, performing 2×O(log log n)− 1 comparisions and taking
the majority outcome at every internal node ensures a constant failure probability but the total
number of comparisions needed is now O(n log log n) (number of internal nodes is O(n)). The trick
to achieve both the goals is to perform more repeated comparisions higher up the tree and less
repeated comparisions lower in the tree. In particular, at each level of the tree, we do 2h − 1
comparisions where h is height of the level. This uses O(n) comparisions to give a constant failure
probability.

1 2 3 4 5 6 7 8

⇒ 5 comparisons

⇒ 3 comparisons

⇒ 1 comparison

Figure 1: Finding minimum using tournament graph for 8 items

4

The total number of comparisons forms an arithmetico-geometric sequence and its value is

S = n/2 ∗ 1 + n/4 ∗ 3 + ...+ 1 ∗ (2 ∗ log2(n)− 1)

< n/2 ∗ (1/(1− 0.5) + 2 ∗ 0.5/(1− 0.5)2)

< 3n

An individual comparison can be wrong with probability δ. We want to upper bound the
probability of error in minimum. Consider figure 1 again, let element 5 be the minimum. The
answer would be correct if all the internal nodes from 5 to the root are correct. The result of rest
of comparisons is immaterial. Hence the probability of failure is the probability that the minimum
element didn’t make it up to the root which is upper bounded by the sum of error probabilities
along the path from the minimum leaf to the root. At every level, the node has the wrong result
if atleast h of the 2h − 1 the comparisons returned the wrong result. Hence, the probability the
minimum is wrong is

p ≤ δ + δ2 + ..δlog2 n

≤ δ

1− δ

Since δ < 1/2, p < 1. Hence, with probability > 1− p the algorithm finds the right minimum.

4. Dynamic noisy binary search tree

In this section we present how we can use the ideas of [1] in order to build a dynamic binary
search tree with the guarantee that at every point all the elements are in their correct positions
with probability > 1 − 1/n where n is the number of elements in the data structure. One basic
issue that [1] didn’t deal with is what happens if we don’t know n a priori or if we have a long
sequence of insertions and deletions.

So, we first present an algorithm that finds the correct place to insert an element in a binary
search tree conditioned on the ordering of the binary search tree being correct. After that we use
this basic operation to describe a dynamic binary search tree when n is unknown at the beginning
of the algorithm’s execution.

4.1. Inserting into a correct binary search tree

The basic idea is to use binary search with backtracking. In order to be able to understand
whether we have to backtrack during the execution of the binary search on the tree, we have to
design a test such that each time we reach a node u the test will indicate whether u is on the correct
path that we had to follow from the root. If it found to not be on the correct path, we backtrack to
the parent of u. Of course this test will also have a probability of failure because our comparisons
are noisy.

We now describe a single step of the insert algorithm. The number of steps that the algorithm
runs for is a fixed number m that will be specified later.

Suppose we wish to find the position of the element x, and after k steps of execution we reach
the node u. We wish to check whether x belongs to the subtree Tu with root u.

5

If u is an internal node, for this to hold x must be greater than the smallest and smaller than the
largest element of Tu. So let au = minv∈Tu v and bu = maxv∈Tu v then we test whether au ≤ x ≤ bu.
So at every node u we also maintain pointers to au and bu. Now once x has reached u we compare
it with au and bu and if the test fails, we backtrack and x goes to its parent. If the test succeeds
then we compare x with u in order to decide to which child of u to move to in the next step.

If u is a leaf then au is defined as the greatest element in the tree which is less than u and bu
is defined as the smallest element in the tree that is greater than u. Therefore the test on the leaf
is again au ≤ x ≤ bu. On reaching a leaf, our algorithm doesn’t stop. It continues executing until
it finishes m steps. If the test at a leaf succeeds we stay at the leaf.

We can model the above search algorithm as a Markov process. Consider a leaf w of the tree
and suppose that x belongs to the interval labeling this leaf. Orient all the edges of the tree towards
w. Note that for every node u, exactly one adjacent edge is directed away from u and the other
adjacent edges are directed towards u. It is easy to see that at every point, the probability that the
algorithm will follow the direction of the edges is at least 1− δ. This is because if the comparisons
are correct then the algorithm will follow the direction of the edges.

Now we define Xt as the random variable that is 1 if at step t, the execution of the algorithm
follows the correct direction and equal to −1 if it follows the opposite direction. Because of the
previous arguments, we have that E[

∑
tXt] = (1− δ)m and so by applying Chernoff bound we can

get that Pr[
∑

tXt ≤ (1 − δ)m/2] ≤ ε−m for some 0 ≤ ε ≤ 1. So if we let m = (4/ log ε)(1/δ) log n
then with high probability 1/n2,

∑
tXt > log n. But

∑
tXt = mf −mb where mf is the number

of forward movements and mb is the number of backward movements. Therefore mf −mb > log n
which implies that the random walk ends to the correct leaf. Since m = O(log n) this procedure
takes logarithmic time and gives the result with high probability.

4.2. Building a dynamic tree

Using the above procedure we can repeatedly add elements to the tree. Each time when we find
the correct position that an element should be placed we know with high probability the ordering
of the elements in the tree. So we can use a self balancing binary tree like AVL-trees and once we
have the correct position of the elements we can do the balancing without making any additional
noisy comparisons by just assume that the correct ordering is the one that we have in the tree at
this point. Therefore if we know the number of operations n, that will be done, a priory, then
using a self balancing tree and the above procedure we can create a dynamic binary search tree
using m = O(log n) which takes time O(log n) for insertion, deletion and search. At every point
the probability of error of the data structure is less than n(1/n2) = 1/n.

Now if n is unknown then we keep two counters n and nold. At every point m = O(log(2nold))
and nold ≤ n ≤ 2nold. Each time we do an insert we increase n by 1. When n becomes equal
to 2nold, we destroy the data structure and we build it from scratch with m = O(log(2n)) and
nold = n. This will take O(n log n) time but we can charge the re-building operations to the last
n/2 operations performed without reconstructing the data structure. Hence each element gets
charged O(log n) for the initial operation and 2O(log n) for the renewing process. So the amortized
cost for each operation is still O(log n) and the probability that there is a mistake in our data
structure is less that 1/n at any point because m = O(log n) at any point.

Therefore we have a dynamic binary search tree that works in the model with noisy comparisons,
has the same amortized complexity as the regular binary search trees and at any point during it’s

6

operation, has probability at most 1/n of failure. All these guarantees are achieved without knowing
n in advance.

5. Noisy Binary Search

We now present the noisy binary search algorithm of Karp and Kleinberg[2] which works with
the noisy model 2. We are given n biased coins in order of their increasing heads probabilities. Let
them be p1, p2, . . . pn where p1 ≤ p2 ≤ · · · ≤ pn. The algorithm doesn’t know {pi} but is allowed to
toss coins and observe the outcomes. For simplicity of analysis, we assume p0 = 0 and pn+1 = 1 and
consider the set {p0, . . . , pn+1} as our search space. A target value τ ∈ [0, 1] and a small number
ε are specified as part of the input and the goal is to find two consecutive indices i and i+ 1 such
that [τ − ε, τ + ε] intersects [pi, pi+1]. Such a solution is called an ε-good solution. It is easy to see
that this goal cannot be achieved always as our estimates of pi might go wrong so the algorithm
finds the right interval with ≥ 3

4 probability.

5.1. A naive algorithm

A naive algorithm would use binary search to locate a good coin, maintaining a pair of indices
a and b (initialized to 1 and n) and always testing the coin midway in the current interval [a, b].
The heads probability p of the midway coin is to be compared with τ . If p lies outside the interval
[τ − ε, τ + ε], using O(1/ε2) tosses of the coin, the algorithm tests whether p < τ or p > τ with at
most a constant error probability (from the Chernoff bound). Since, we do log n such comparisons
over the course of a binary search, and wish for a constant overall error bound, we ensure that each
comparison has O(1/ log n) error probability. To do this, we toss the coin O(log logn

ε2
) times instead

of just O(1
ε2

) times, giving an algorithm of running time O(logn log logn
ε2

).

5.2. A Faster Algorithm: Binary Search with Backtracking

The naive algorithm introduces an additional O(log log n) factor in the running time of the
classical binary search algorithm which is removed by a more clever binary search. This algorithm
uses backtracking and finds a 1/3-good solution. Later, we see how to get an ε-good solution, for
an arbitrary ε, given the 1/3-good solution. We will present the algorithm when the target τ = 1/2
as this simplifies the analysis of the algorithm. Later, we will show how to reduce the problem of
searching for a general τ to one with τ = 1

2 .
Algorithm for τ = 1/2: Let T be an infinite rooted binary tree. Each node of the tree is

labeled with a pair of indices from the set {0, 1, . . . , n + 1}. The labeling is defined recursively as
follows. First, the root is labeled (0, n+ 1). For every vertex v with label (a, b), let m = b(a+ b)/2c
and label the left child L(v) with (a,m) and the right child R(v) with (b,m). Note that if the label
(a, b) of a node satisfies b = a + 1, both its children will be labeled (a, b) as well and hence an
infinite tree exists (We need an infinite tree due to the randomized nature of the algorithm). Let
P (v) denote the parent of v. If v is the root, we let P (v) = v.

1. Start round 0 at the root of T.

2. In round t, suppose we are at node v(t) with label (a, b) and whose children are labeled (a,m)
and (m, b). We flip coin a twice and coin b twice. If both a-flips are heads or both b-flips are
tails, we take this as evidence of pa > 1/2 or pb < 1/2 and we backtrack to the parent node.
That is v(t+ 1) = P (v(t)).

7

3. Otherwise, we flip coin m and move to L(v(t)) if the flip yields heads and move to R(v(t)) if
the flip yields tails.

4. At the end of every round t, with probability 1/ log n, we perform a termination test to decide
if we should halt before proceeding to round t+ 1. The termination test essentially checks if
either coin a or coin b is close to the target.

5. Termination Test: Let k = d300 log ne. We perform k flips of coin a and k flips of coin b.
Let the number of heads be ha and hb respectively.

(a) If 1
4 ≤ ha/k ≤

3
4 , halt and output a.

(b) If 1
4 ≤ hb/k ≤

3
4 , halt and output b.

(c) If b = a+ 1 and ha/k <
1
2 < hb/k, halt and output a.

(d) If none of the above happen, proceed to round t+ 1.

Analysis of the algorithm: The above mentioned algorithm outputs a coin which is 1/3-good
and has expected running time O(log n). The constant 300 in the termination test isn’t unique.
Any constant > 2(12)2 = 288 would have worked. We sketch the steps of the proof below in 4
lemmas. We defer the full proofs of 3 of the sub lemmas we use to Appendix A. We define a node
of T to be promising if one of the following conditions holds for its label (a, b):

1. pa ∈ [1/4, 3/4]

2. pb ∈ [1/4, 3/4]

3. b = a+ 1 and 1
2 ∈ [pa, pb]

Denote by W the set of all promising nodes in T.

Lemma 5.1. For any t, if v(t) ∈ W , and a termination test is performed at time t, then the
algorithm halts with at least a constant probability.

Lemma 5.2. Let d(v(t),W) denote the distance in T, from v(t) to the closest node of W . If
v(t) /∈W , the probability that d(v(t+ 1),W) = d(v(t),W)− 1 is at least 9/16.

Using the above two lemmas, we now show that the expected number of rounds for which the
algorithm runs is O(log n). Since each round takes O(1) time in expectation (termination test is
performed only with O(1/ log n) probability), this will imply the O(log n) time complexity of the
algorithm. To prove this we will use Azuma’s inequality for submartingales which we will state
here.

Definition A sequence of random variables X0, X1, . . . Xn is called a submartingale if

E [Xi+1|X0, . . . Xi] ≥ Xi ∀i

Lemma 5.3. Azuma’s inequality: Suppose X0, X1, . . . , Xn is a submartingale and |Xi+1−Xi| ≤
1 for 0 ≤ i < n. Then Pr (Xn ≤ X0 − t) ≤ exp

(
−t2
2n

)
.

Lemma 5.4. The expected number of rounds for which the algorithm runs is O(log n).

8

We start the proof by defining a potential function Φ. Let Yt = d(v(t),W) and Zt = #{s < t|v(s) ∈
W}

Φt = dlog2 ne+ Zt − Yt −
1

8
(t− Zt)

Now, Φ0 = dlog2 ne − d(v(0),W) ≥ 0 because the closest promising node to the root is at a depth
≤ dlog2 ne. Next, we show that {Φt} is a submartingale. If v(t) ∈ W , then Zt+1 = Zt + 1 and
Yt+1 ≤ Yt + 1. Hence, Φt+1 ≥ Φt which implies E [Φt+1|Φt, v(t)] ≥ Φt. If v(t) /∈W , then Zt+1 = Zt.
From Lemma 5.2, we have that d(v(t + 1),W) = d(v(t),W) + 1 with probability at most 7/16
and hence, E [Yt+1|Yt, v(t)] ≤ Yt − 1/8 which implies E [Φt+1|Φt, v(t)] ≥ Φt proving that {Φt} is a
submartingale.

Now, if the algorithm did not terminate before round t and t > 160(1 + log2(n)), then Φt ≤
log2(n) + 1 + 9

8Zt−
t
8 . If Zt ≤ t/10, then log2(n) + 1 + 9

8Zt−
t
8 < t/160. From Azuma’s inequality,

we have Pr(Φt < t/160) < (1 − δ)t for some constant δ. If Zt > t/10, then from Lemma 5.1, we
have Pr(Zt > t/10) < (1− δ′)(t/ logn) for some other constant δ′. Hence when t > 160(1 + log2(n)),
the probability of the algorithm running for t rounds decays exponentially in t/ log(n) giving an
expected number of rounds as O(log n).

Lemma 5.5. If the algorithm halts, the probability that the result is not 1/3-good is at most 4/n.

Getting an ε-good solution from a 1/3-good solution: Now all that’s left is to get an
ε-good solution given the above algorithm which outputs a 1/3-good solution. We will sketch the
idea in brief and leave out the details. Intuitively, the construction runs by amplifying the devia-
tion of the heads probability of each coin from that of a fair coin. The amplification is such that
a 1/3-good solution among the amplified coins corresponds to an ε-good solution in the original
coin set. Such an amplification is achieved by repeated tosses of the coin and an application of the
Chernoff bound. This introduces an additional 1/ε2 factor in the running time of the algorithm.
This completes the analysis of the algorithm for τ = 1/2.

Reduction from a general τ to τ = 1/2: The principle behind the reduction is to construct
a simulation procedure which, given a coin i with heads probability pi, simulates a coin with heads
probability f(pi) where f is a strictly increasing linear function such that f(τ) = 0.5. To construct
such a procedure, we assume the availability of a fair coin. It is a well-known result in literature
that using two tosses of a fair coin in expectation, a coin with an arbitrary heads probability can
be simulated. We will use this result to construct the above procedure.

If τ > 1/2, the procedure flips coin i and a simulated coin with heads probability 1/2τ , and
declares heads if both outcomes are heads. Probability of heads being declared by the procedure
is pi

2τ . If τ ≤ 1/2, the procedure flips coin i and a simulated coin with heads probability 1/2−τ
1−τ

and declares heads if at least one of the outcomes is heads. Probability of heads being declared
in this case is 1 minus the probability that both the flips resulted in tails, which is, (1−pi)

2(1−τ) . Hence

probability of heads being declared is 1 − (1−pi)
2(1−τ) = 1+pi−2τ

2(1−τ) . Finally note that, if f(τ(1 − ε)) =

1/2(1 − ε′) for some constant ε′, then f(τ(1 + ε)) = 1/2(1 + ε′) due to linearity of f . Hence we
are still searching for overlap with a symmetric interval. The only difference being that it is now
centered at 1/2 instead of τ .

Given this simulation procedure, for an arbitrary τ , we do the following. Whenever we wish to
compare τ with pi, using 3 tosses in expectation for every toss of coin i, we compare instead 1/2

9

with f(pi).

6. Applications on the noisy comparison model

6.1. Application to Machine Learning

One very interesting application of the model that we are presenting in this paper is an applica-
tion to machine learning and computational learning theory. A very common problem in this field
is the following. Given access to a sample generator of an unknown distribution D that belongs
to a class of distributions C, compute a distribution D′ that is ε−close to D with respect to some
distance measure such as the total variation distance.

A common technique for this problem is to find an ε−cover Cε of C. This means that for every
D ∈ C there exists D′ ∈ Cε such that the distance between D and D′ is less than ε. After finding
such a cover of polynomial size, we would like to choose a D′ ∈ Cε such that the distance between
D and D′ is less than ε. Since Cε is an ε−cover it suffices to find the D′ ∈ Cε which is closest to
D. So we set up a noisy comparison that given D′, D′′ ∈ Cε finds the one that is closest to D. To
do so we use the samples from D and we also generate some samples from D′ and D′′ and after
O(log(1/δ)/ε2) samples we can conclude the winner if the distance is greater than ε with probability
of failure δ. For more details on this construction we suggest looking here [5]. There appears to be
an analogy between this model and the coin comparison that we described in detail before.

To solve this find minimum problem we set up a tournament as we did in section 3 and we get
a winner with the same guarantees doing just O(n) comparisons and using O(log n/ε2) samples,
i.e. constant number of samples for every comparison.

6.2. Finding shortest paths in graphs with uncertainty

In many real life applications the input that we are given has a lot of uncertainty. One very
common example is the case of finding shortest paths in computer networks. A classical problem
in this direction is the so called stochastic shortest path problem. In this problem the cost of each
edge is a random variable and the goal is to find a path which is optimal in expectation[6].

Here, we assume that we don’t know exactly the distribution of the costs of the edges in the
network. We assume that we know the topology of the network. First we have to set up a noisy
comparison model. So assume that we want to compare the cost of an edge e1 = (u1, v1) with the
cost of the edge e2 = (u2, v2). To do this, we send a constant number of packets from u1 to v1 and
the same number of packets from u2 to v2. After that we compare the average times for sending
the packets along each of the edges and we output the edge with smaller average time as the winner
of this comparison. Here we make the assumption that after this procedure the above comparison
has a constant probability of failure δ which is bounded away from 1/2.

We also assume that we have a lower bound on δ, lets say that we know that we know that
the means of the weights are separated by at least a constant. Now we run the usual Dijkstra’s
algorithm but using the noisy binary search tree that we described in 4, as a heap instead of using
a classical binary heap. Then we can ensure that we will find all the optimal paths with high

10

probability because the binary search tree is guaranteed to work will high probability at any point.
So our solution is optimal, with a small probability of error compared to the algorithms that find
the optimal in expectation solution. The interesting part here is that we do so with running time
which is the same as the usual Dijkstra’s algorithm which runs is O(|E| log |V |) time.

7. Noisy sorting without resampling

In this section we describe the work of Braverman and Mossel [3] to deal with sorting in the
noisy input model. A challenge that arises in noisy comparison model is that sometimes it is im-
possible to do a specific comparison more than one or two times. Such a restriction is natural when
we want to report a ranking of n sport teams and we are not allowed to ask the teams to play more
than once since every tournament has a specific duration. In this case we have to be able to sort
the teams, as well as possible, based on the results of the games that they have already played. So
since the number of teams is maybe limited we are not interested so much in the total running time
of our algorithm but we are interested in the total number of samples that we use conditioned on
the fact that every pair should be compared at most once.

In another interpretation of this problem we have as input a directed graph on the n items
where the direction of each edge in the graph describes the result of the noisy comparison between
them. Now our goal is to find a topological ordering of the items in which the least number of edges
are backward and do not follow the topological ordering. This problem is a well known NP-hard
problem [7] called feedback arc set problem for tournaments. For this problem a PTAS is known,
so we can, in polynomial time, approximate as well as we want the best ordering. In this work
we are interested in finding the best ordering with high probability and looking at just O(n log n)
comparisons.

Let q(ai, aj) = 1 if the result of the comparison between the results ai ≥ aj and let q(ai, aj) = −1
otherwise. For any σ a permutation of the n elements, we define the score of this permutation to
be sq(σ) =

∑
i,j:σ(i)>σ(j) q(aσ(i), aσ(j)). Our goal in this section is to find a permutation τ that

minimizes the quantity sq(τ) with high probability. After finding this permutation sq(τ) we have
to prove that if the comparisons that we made were noisy, but a real ordering π exists, then τ is
very close to π.
The algorithm that produces τ consists of two parts

• Sorting an almost sorted list

• Producing an almost sorted list via insertion sort

After having the above procedures the algorithm produces an almost sorted list and then finds the
optimal ordering using the first procedure for sorting an almost sorted list.

7.1. Sorting an almost sorted list

Let a list be k−almost sorted if, for all 1 ≤ i ≤ n, the ith element of the list satisfies |i−τ(i)| ≤ k.
Then using dynamic programming we can prove the following

Theorem 7.1. There is an algorithm with running time O(n2 · 26k), which produces an optimal
ordering τ from an k−almost sorted list.

11

Suppose we want to find the set of elements SI that will be indexed in the interval I = [i, j]
in the optimal ordering, then based on the assumption of the k−almost sorted list we know that
all the elements with current index [i + k, j − k] will belong to SI . For the rest we know that
they will be at most k positions away, so their current index will be in either I1 = [i− k, i+ 1] or
I2 = [j− k, j+ k]. So in order to find the whole SI we need to choose the correct 2k elements from
the set of 4k elements in the intervals I1 and I2. We have 24k different choices for doing this. We
can enumerate each one of them and choose the best one.

Based on this idea the algorithm proceeds by finding SI for big interval and recursively finds
S′I for I ′ ⊆ I until we get an ordering with high probability. Also memoization is used in order to
avoid repeated work.

7.2. Producing an almost sorted list via insertion sort

We call a list of elements almost sorted if for all 1 ≤ i ≤ n the ith element of the list satisfies
|i− τ(i)| ≤ c · log n. Using a careful variation of insertion sort we can prove the following

Theorem 7.2. There is an algorithm that runs in time nr, where r = O(γ−4(β + 1)) that outputs
an almost sorted list with probability 1− n−β/2.

Here we use a randomized version of insertion sort. Let l = c log n and assume that we have
an l−almost sorted sublist Sk−1 with |Sk−1| = k − 1. We choose a random element ak from the
list that is not in Sk−1. We want to insert ak in the correct position in Sk−1. To do so we split
Sk−1 into parts B1, . . . , Bs with length l′ = (c/4) log n each. So our first goal is to find the Bi in
which ak should be placed. We do a binary search through B′js in order to find Bi and each time
we compare ak with Bj we compare ak with every element in Bj and take the majority. Because
Sk−1 is l−almost sorted we can prove that with high probability the comparisons between ak and
Bj with |i − j| > 1 are correct. Therefore after the binary search we will find j = i ± 2. If we
place ak arbitrarily in Bj then we will get an l−almost sorted list Sk. We now repeat by randomly
choosing the next element to insert.

7.3. Performance of the algorithm

It is easy to show that has the above algorithm has running time nr, where r = O(γ−4(β + 1))
by carefully calculating the number of steps that we described above. The analysis of the number
of comparisons that the algorithm needs is a more complicated procedure and we refer to the paper
for the proof that with high probability the number of comparisons made is O(n log n).

The most interesting and non obvious guarantee of this algorithm is that it approximates the
initial ordering π. This is not obvious because the result of our algorithm is the ordering τ that
minimizes sq(τ) and therefore has no direct relation with π. Despite that we can show that τ
approximates π. In order to be able to express this approximation we define d(ai) = |π(i)− τ(i)|.
We have two kinds of approximation, approximation in expectation and approximation with high
probability. If we let I be the random variable that uniformly takes a value from 1 to n, in
expectation the result is

E[d(aI)] = constant

For the high probability result we have

Pr[d(ai) ≥ c log n] ≤ Õ(n−c) ∀i

12

7.4. Application to Voting [8]

Social choice theory studies the aggregation of individual preferences towards a collective choice.
In one of the most common models, both the individual preferences and the collective decision are
represented as rankings of the alternatives. A voting rule takes the individual rankings as input
and outputs a social ranking.

One can imagine many different voting rules; which are better than others? The popular ax-
iomatic approach suggests that the best voting rules are the ones that satisfy intuitive social choice
axioms. For example, if we replicate the votes, the outcome should not change; or, if each and ev-
ery voter prefers one alternative to another, the social ranking should follow suit. It is well-known
though that natural combinations of axioms are impossible to achieve [9], hence the axiomatic
approach cannot give a crisp answer to the above question.

A different in a sense competing approach views voting rules as estimators. From this view-
point, some alternatives are objectively better than others, i.e., the votes are sim- ply noisy estimates
of an underlying ground truth. One voting rule is therefore better than another if it is more likely
to output the true underlying ranking; the best voting rule is a maximum likelihood estimator
(MLE) of the true ranking.

From this point we can view the work of Braverman and Mossel [3]. Given samples from the
rankings of the agent, they aim to compute the Kemeny rule; which is the maximum likelihood
estimator of the ordering in this model with noisy comparisons. And so we have an efficient
algorithm that computes the Kemeny ranking with arbitrarily high probability.

8. Conclusions

In this paper we presented basic algorithms and data structures in different, commonly used,
noisy comparison models. We also present some applications of these in a variety of settings in
theoretical computer science proving the importance of the research in this field.

One future direction that is maybe interesting especially for real life applications is the investi-
gate what happens when the probability of error in a comparison depends on the actual distance
between the elements. This case is captured by the coin flip model and this is the main importance
of this model. So it would be interesting if we could extend the binary search tree construction to
this model in order to be able to run more complicated algorithms which will have applications in
solving real life problem.

References

[1] U. Feige, P. Raghavan, D. Peleg, E. Upfal, Computing with noisy information, SIAM J.
Comput. 23 (1994) 1001–1018.

[2] R. M. Karp, R. Kleinberg, Noisy binary search and its applications, in: Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and
Applied Mathematics, pp. 881–890.

[3] M. Braverman, E. Mossel, Noisy sorting without resampling, in: Proceedings of the nineteenth
annual ACM-SIAM symposium on Discrete algorithms, pp. 268–276.

13

[4] M. Tulsiani, S. K. Kundu, M. Mitzenmacher, E. Upfal, J. H. Spencer, Probability and com-
puting: Randomized algorithms and probabilistic analysis, 2013.

[5] C. Daskalakis, G. Kamath, Faster and sample near-optimal algorithms for proper learning
mixtures of gaussians, in: Proceedings of The 27th Conference on Learning Theory, COLT
2014, Barcelona, Spain, June 13-15, 2014, pp. 1183–1213.

[6] C. H. Papadimitriou, M. Yannakakis, Shortest paths without a map, Theor. Comput. Sci. 84
(1991) 127–150.

[7] N. Alon, Ranking tournaments, SIAM J. Discrete Math. 20 (2006) 137–142.

[8] I. Caragiannis, A. D. Procaccia, N. Shah, When do noisy votes reveal the truth?, in: ACM
Conference on Electronic Commerce, EC ’13, Philadelphia, PA, USA, June 16-20, 2013, pp.
143–160.

[9] K. Arrow, Social choice and individual values, John Wiley and Sons (1951).

[10] M. L. Fredman, R. E. Tarjan, Fibonacci heaps and their uses in improved network optimization
algorithms, J. ACM 34 (1987) 596–615.

14

Appendix A. Lemmas from Section 5

Lemma Appendix A.1. For any t, if v(t) ∈ W , and a termination test is performed at time t,
then the algorithm halts with at least a constant probability.

Proof: Since v(t) ∈W , one of the following three cases holds.

1. pa ∈ [1/4, 3/4]. In this case, the algorithm will halt if ha/k ∈ [1/4, 3/4]. The probability
that ha/k ∈ [0, 1/4) is bounded by the probability that ha/k ∈ [pa − 1/4, pa] since pa ≥ 1/4.
This is in turn bounded by a constant (from the Chernoff bound and the fact that ha/k
is symmetrically distributed around pa). Similarly, the probability that ha/k ∈ (3/4, 1] is
bounded by a constant, implying that the algorithm halts with at least a constant probability.

2. pb ∈ [1/4, 3/4]. Use a similar analysis as above.

3. b = a + 1 and 1/2 ∈ [pa, pb]. The algorithm will halt if ha/k < 1/2 and 1/2 < hb/k, each of
which happens with at least a constant probability using a similar argument as above. Hence
the algorithm will halt with a probability at least as much as the product of two constants,
which is a constant.

Lemma Appendix A.2. Let d(v(t),W) denote the distance from v(t) to the closest node in W .
If v(t) /∈W , the probability that d(v(t+ 1),W) = d(v(t),W)− 1 is at least 9/16.

Proof: Note that the path from v(t) to the closest promising node might go up from v(t). Let (a, b)
be the label of v(t). If it isn’t a promising node, either

1. pa < 1/4 and pb < 1/4. Note that any descendant of v(t) in this case will have pa < 1/4
and pb < 1/4 and hence won’t be in the promising set. So the path from v(t) to the closest
promising node goes up from v(t). Hence when we backtrack, d(v(t+ 1),W) decreases by 1.
The probability that both b tosses yield tails is at least 9/16 and hence we backtrack with at
least 9/16 probability.

2. pa > 3/4 and pb > 3/4. We use a similar analysis as above.

3. pa < 1/4 and pb > 3/4 but b − a > 1. Now note that, no ancestor of v(t) is in W . Let NB
denote the event that we do not backtrack at round t. This happens if at least one of the
a tosses is tails and one of the b tosses is heads. Hence Pr(NB) ≥ (15/16)2. Consider the
midway coin m = b(a+ b)/2c. There are two cases

• pm ∈ [1/4, 3/4]. In this case, both children of v(t) are in W and hence we move to a
mode in W with probablity at least (15/16)2 > 9/16.

• pm < 1/4 or pm > 3/4. Assume, wlog, the former. In this case, all of W is contained
in the right subtree of v(t) and we move to the right when the m toss results in tails
which happens with probability 1 − pm ≥ 3/4. Hence we move closer to a node in W
with probability at least 3/4(15/16)2 > 9/16.

Hence, in all cases we move closer to a node in W with a probability at least 9/16.

Lemma Appendix A.3. If the algorithm halts, the probability that the result is not 1/3-good is
at most 4/n.

15

Proof: Informally, we show that ha/k and hb/k are close to pa and pb. And since ha
k ,

hb
k satisfy

the conditions for halting, they must in turn be close to 1/2 ensuring the closeness of pa, pb, or far
enough such that the interval [pa, pb] includes 1/2 (in this case b = a+ 1 also).
Formally, the probability that |ha/k − pa| > 1/12, using the Chernoff bound 1.1 is upper bounded
by 2 exp(−k/288) ≤ 2/n. Similarly |ha/k − pa| > 1/12 with at most 2/n probability. If neither of
the above 2 events happen, given that the algorithm halted one of the following must happen:

1. ha/k ∈ [1/4, 3/4] and the algorithm outputs a. In this case pa ∈ [1/6, 5/6].

2. hb/k ∈ [1/4, 3/4] and the algorithm outputs b. In this case pb ∈ [1/6, 5/6].

3. b = a + 1 and 1/2 ∈ [ha/k, hb/k]. Also, ha/k < 1/4 and hb/k > 3/4. In this case, pa <
1/4 + 1/12 = 1/3 and pb > 3/4− 1/12 = 2/3 and hence 1/2 ∈ [pa, pb].

In all 3 cases we output a coin which is 1/3-good, and since the probability of one of the above not
holding is at most 4/n this proves our statement.

Appendix B. Our Results

Appendix B.1. Noisy Fibonacci Heap

We design a noisy heap which can perform insert and delete-minimum operations efficiently.
The intention is to use this heap to develop an efficient sorting algorithm which we present in ??.
We assume that we know the maximum number of elements in the heap at any time. We denote this
number by n. We do not need the decrease-key operation for our sorting algorithm and hence our
heap does not support decrease-key. We modify the classical Fibonacci heap to get our noisy heap
which performs insert in O(log log n) amortized time and delete-min in O(log n log log n) amortized
time. This noisy heap has the guarantee that every call to delete-min can independently be wrong
with at most O(1/ log2(n)) probability. We present the sketch of the design and the analysis below.
We assume the reader has working knowledge of Fibonacci heaps [10]. Choose as the potential
function Φ = Number of roots× k log log n.

• INSERT: We add the item to be inserted into the list of root nodes. Real cost is O(1) but
increase in potential is O(log log n). Hence amortized cost = O(log log n).

• MERGE: To merge two trees, classically, Fibonacci heaps would compare the roots of the two
trees and would make one the child of the other. This took constant time. Now, we perform
O(3 log log n) repeated comparisons. The decrease in potential is also O(log log n) and hence
the amortized cost of a merge is O(1).

• DELETE-MIN: We maintain a pointer to the minimum root and when delete-min is called,
we delete the root and add all it’s children to the list of root nodes. Then we consolidate
all the heap-ordered trees until there is at most one tree of each rank, by using the merge
operation. Since our heap doesn’t support decrease-key, each heap-ordered tree we have is a
perfect binomial tree and hence every root has rank ≤ O(log n). Therefore, the number of
roots after the consolidate operation is at most O(log n). Now, we scan all the roots to find
the new minimum using the offline minimum finding algorithm of Section 3. This finishes in
O(log n) time. The total real cost of delete-min is O(No. roots) log log n+O(log n). The total
change in potential is O(log log n)(log n−No. roots). Hence the amortized cost of delete-min
is O(log n log log n).

16

Now, all that’s left to show is the constant error guarantee for delete-min. The probability that the
minimum element isn’t one of the roots of the HOTs, is upper bounded by the probability of the
failure of at least one of the merge operations applied on the minimum element during the formation
of the tree. Since the depth of each HOT is at most O(log n), the number of merge operations on the
minimum element is at most O(log n). And the probability of failure of any single merge operation
independently is O(1/ log3(n)). Hence by the union bound, we achieve the a failure probability
O(1/ log2(n)) for the minimum element not being among the root nodes. The offline minimum
finding algorithm fails to find the minimum among the root nodes with constant probability δ2. By
increasing the number of repeated comparisions in that algorithm by a multiplicative factor of 3,
we achieve an error bound of O(1/ log2(n). Hence by union bound, the probability that delete-min
goes wrong is O(1/ log2(n).

Appendix B.2. Sorting in O(n log n log logn) time

As we have said before the naive solution to the noisy sorting problem takes time O(n log2 n).
In this section we reduce the multiplicative factor of log n and to log log n. Inspired by [3] our
sorting algorithm consists of two steps

• Producing a list in which O(n/ log n) items are misplaced

• Sorting the above list using insertion sort

Producing a list in which O(n/ log n) items are misplaced
We run a heapsort algorithm using the heap presented in the previous section. As we have seen,
with O(log n log log n) complexity we can ensure that every time delete-min gives the minimum
with probability at least 1 − 1/ log2 n and so with high probability at most O(n/ log n) items will
be misplaced after this heap sort step. So in total this step costs O(n log n log log n) time. Next we
formalize this argument.

Sorting the list with O(n/ log n) misplaced items
To do this step, we take the list obtained in the previous part and start comparing sequentially every
item i with its successor i+1, repeating each comparison O(log n) times, in order to get the answer
of this comparison with very high probability. If ai ≤ ai+1 then we continue with the next item.
Otherwise we remove both the ith and the i+ 1th elements and we add them to a set S. After this
procedures finishes (which takes O(n log n) time) we have a sorted list with O(n(1−1/ log n)) items
and an unsorted set S with O(n/ log n) items. We sort S using any standard sorting algorithm for
the noisy setting, which takes O((n/ log n) log2 n) = O(n log n) time. So finally we have two sorted
lists and we have to merge them. We do so using the merging procedure of the mergesort, but now
repeating each comparison O(log n) times. The noise-free merge takes linear time and when we
repeat each comparison O(log n) times it takes O(n log n) time. So in total we have O(n log n) time
for noisy merge. Therefore the total running time of our algorithms is dominated by the previous
part and it is O(n log n log log n).

Appendix B.3. Sorting in O(n log n log∗ n) time

Suppose we have a heap with O(log n) insertion, O(log n) delete-min and each time we ask for
the minimum it gives the answer with constant probability of error. In this case by multiplying the
number of repetitions of every comparison by O(k) we can have a heap with O(k log n) insertion,
O(k log n) delete-min and each time we ask for the minimum gives the answer with probability of

17

error O(1/(2k)) by applying the Chernoff bounds as in the previous sections.

Now we assume that we have a sorting algorithm with running time O(n log n2k) then we do
the same procedure as in the previous section.

Producing a list in which O(n/2k) items are misplaced

To do this step we run a heapsort using the heap that is presented in the previous section. As
we have seen there with O(k log n) complexity for delete-min we can ensure that every time we get
the minimum with probability at least 1−1/2k and so with high probability at most O(n/2k) items
will be misplaced after this heap sort step. So in total this step costs O(n log nk) time. Next we
formalize this argument.

Sorting the list with O(n/2k) misplaced items

As we before to do this step we take the list of the previous part and we start comparing
sequentially every item i with the next item i + 1 O(log n) times in order to get the answer of
this comparison with very high probability. If ai ≤ ai+1 then we continue with the next item.
Otherwise we remove both the ith and the i+ 1th elements and we add them to a set S. After this
procedures finishes, which takes O(n log n) time, we have a sorted list with O(n(1 − 1/2k) items
and an unsorted set S with O(n/2k) items. We sort S using the hypothetical algorithm which takes
O((n/2k) log n2k) = O(n log n) time. So finally we have to sorted lists and we have to merge them.
We do so using the merging procedure of the mergesort repeating each comparison O(log n) times.
The merging procedure takes linear time and when we repeat each comparison O(log n) times it
takes O(n log n) time. So in total we have O(n log n) time for this procedure. Therefore the total
running time of our algorithms comes from the previous part and it is O(kn log n).

The above result give that we can have an algorithm with running time O(kn log n) from an al-
gorithm with running time O(2kn log n) by spending an additional O(n log n) time. So by repeating
this procedure O(log∗ n) times we end up with an algorithm with running time O(n log n log∗ n).

18

