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ABSTRACT
We1 consider the task of matrix sketching, which is obtain-
ing a significantly smaller representation of matrix A while
retaining most of its information (or in other words, ap-
proximates A well). In particular, we investigate a recent
approach called Frequent Directions (FD) initially proposed
by Liberty [5] in 2013, which has drawn wide attention due
to its elegancy, nice theoretical guarantees and outstanding
performance in practice. Two follow-up papers [3] and [2]
in 2014 further refined the theoretical bounds as well as im-
proved the practical performance. In this report, we summa-
rize the three papers and propose a Generalized Frequent Di-
rections (GFD) algorithm for matrix sketching, which cap-
tures all the previous FD algorithms as special cases without
losing any of the theoretical bounds. Furthermore, we imple-
mented our GFD algorithm and show experimental results
on synthetic and real-world datasets from [2]. Specifically,
we explored a class of GFD algorithms called Monotonic
GFDs (mGFDs) and experimentally show that they have
less approximation errors and are at least one order of mag-
nitude faster than previous best algorithms. We will make
the code and data publicly available to promote peer re-
search.
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1. INTRODUCTION
Humans are collecting and analysing increasingly large amount
of data. Very often they are stored in matrices, which are
simple but powerful representations for capturing, storing
and analysing data. However, many of the matrix algo-

1I am the only author. But I tend to use “we” in the paper
instead of “I” because that is how I usually write papers.
I may also release it as a technical report sometime. “we”
sounds more professional.

rithms do not scale linearly with respect to the input size.
Also, some of our hardware limitations, like memory size,
increase sublinearly to the speed of data collection. Thus,
developing algorithms to efficiently process large matrices
with limited time and space is a crucial task.

Matrix sketching is an important operation for processing
large data, which plays a critical role in compression, image
processing, computer vision, machine learning and most of
the data scientific fields. The primary goal is to significantly
reduce the size of a matrix while retaining most of its
information. There are many ways of sketching a matrix
(e.g., reducing rows vs. reducing columns). In order to be
very specific, we define the “matrix sketching” in this
report as follows: Let us say there is a large matrix A of
size n by d where n is the number of samples and d is the
number of variables that each sample has, and rank(A) = r.
We want to find a matrix B of size l by d, where l << n is
given. As suggested by [2], [3] and [5], there are two types
of criteria to evaluate the quality of the sketch B:

1. Additive Error Sketches (AES) (suggested by [5]):
We want B to minimize ||ATA − BTB||2, where ||.||2
denotes the spectral norm. In section 3.3, we show
that we can instead minimize sup(||Ax||2−||Bx||2), ∀x,
where x is a unit vector, since ||ATA − BTB||2 =
maxx:||x||=1(||Ax||2 − ||Bx||2).

2. Relative Error Sketches (RES) (suggested by [3],[2]):

We want B to minimize
||A−πBk (A)||2F
||A−Ak||2F

, where Ak =

UkSkV
T
k is the optimal2 rank k approximation of A,

where Uk, Sk, Vk are the first k columns of [U, S, V ] =
svd(A). Here ||.||2F is Frobenius norm (i.e., Euclidean
norm). πBk (A) = WTBk, where W is the solution of
the linear least square problem3 minW ||A−WTBk||2F ,
and Bk are the first k ≤ l rows of B.

Here are some intuitions of the two types of sketches. The
2Solving the rank k approximation using this procedure
is optimal. Proofs are in http://en.wikipedia.org/
wiki/Low-rank_approximation. The idea is that SVD
provides optimal approximation error. We want to minimize
the ratio between our approximation error to the optimal ap-
proximation error. The reason we do not use SVD directly
is that it is expensive on a large matrix A. The whole point
is to avoid performing SVD on large matrices.
3Explained in the Appendix. See appendix for the solution
of W .



first criterion AES is straightforward to understand. It is
clear that an AES is a good sketch since it minimizes the
difference between the covariance matrices of A and B. It
is important to note that the right singular vectors V are
the eigenvectors of the covariance matrix. That is, let us
say [UASAVA] = svd(A) and [UBSBVB ] = svd(B), BTB ≈
ATA ⇐⇒ VB ≈ VA. VA is very important for dimensional
reduction (i.e., Areduced = A ∗ Vk, where Vk are the first
columns of VA) and other purposes. There, however, is a
weakness of the additive property that it is sensitive to the
absolute value of ATA. Thus, people are more in favor of
relative bounds on the errors.

The second criterion RES is not completely straightforward
to understand4. Recall that we choose W that minimizes
||A−WTBk||2F (i.e., least square problem). One way of un-
derstanding it is that minimizing ||A−WTBk||2F is minimiz-
ing the error when representing each row of A as a weighted
combination of rows in Bk. Since WTBk is of rank k, it is
minimizing the error of a rank k approximation of A. It is
natural to compare its error with ||A − Ak||2F since the Ak
is the optimal rank k approximation of A.

Another intuition is that, by solving the linear least square
problem, we get πBk = WT = ABTk (BkB

T
k )+Bk. P =

BTk (BkB
T
k )+Bk is a Projection Matrix (See appendix for

the definition of Projection Matrix), since P 2 = P . A pro-
jection matrix P has a property that I − P represents the
subspace that is orthogonal to P . Minimizing ||A−AP ||2F =
||A(I−P )||2F is minimizing the information projected to the
orthogonal space, which means maximizing the information
projected to P .

In this report, we are going to derive bounds for both types
of sketches in Section 3.3 and Section 3.4, respectively.

To get a sketch B of matrix A, we process each row of A
once and discard it. So it supports either online (where one
observe one sample/row at a time) or offline settings (where
one can simply stream a random permutation of rows from
A).

1.1 Summary of the contributions of this project
This is a reading, research and implementation project.

1. Reading: read and summarized [5], [3] and [2].

2. Research: (1) Propose an original algorithm called
Generalized Frequent Directions (GFD) and proved re-
lated bounds. (2) Improved the time complexity of the
algorithms with relative error bound from O(n) itera-
tions toO(n/l) iterations (while keeping the same com-
plexity for each iteration). This is an order of O(1/l)
speedup.

3. Implementation: (1) Implemented GFD (2) extensively
explored the parameter space of Monotonic GFD (mGFD)
(3) compared mGFD with different previous algorithms
on real-world and synthetic data. (4) Will make code
and data publicly available

4It is not explained in any of the papers. In the literature,
πBk (A) = ABTk (BkB

T
k )+Bk is given directly with little ex-

planation.

1.2 Frequent Directions for Matrix Sketching
Frequent Directions (FD) is a new approach proposed in
2013 inspired by Frequent Items (FI, see below for descrip-
tions). We do not know how the original authors came up
with this idea, but one natural train of thought could be:

• As mentioned before, the optimal approach to perform
dimension/rank reduction is to do SVD on the entire
dataset (i.e., SVD gives the optimal rank k approxi-
mation).

• But it is too expensive to do SVD on the entire matrix
A, let us do it in a streaming fashion with a limited
sized buffer.

• What if the buffer is full? Let us discard some sam-
ples(i.e., rows).

• What are the best candidates to discard? One cannot
discard samples directly. Let us represent the samples
as linear combination of some basis and discard some
basis (i.e., directions) instead.

• What basis to discard? Probably the least useful basis
(i.e., least frequent directions)

• How to get the least frequent directions? Let’s use
SVD and pick the ones that have small singular values.

• Conclusion: decrease some smallest singular values.

• After discarding least useful directions, we have some
space for new samples. Then we keep iterating the
above steps.

I believe the original author first came up with the algo-
rithms, then defined the Additive Error Sketches (AES) and
proved the bounds. So the discoveries are most likely be
“algorithm-driven” — first one has an elegant algorithm and
then he/she seeks for some formalizations and bounds. This
is my answer to the question how Frequent Directions (FD)
relates to the matrix sketching in my peer-review. The most
obvious relationship is that it is doing some streaming/iter-
ative SVD.

1.3 Background: Frequent Items
Frequent Directions (FD) is extended from the classic prob-
lem called Frequent Items (FI), which was invented multiple
times [7], [1], [4], [6]. In a FI problem, there is a stream
s1, s2, s3, ..., sn of items drawn repeatably from a dictionary
of m elements M = {1, 2, 3, ...,m}. The goal is to estimate
the frequency fi of any item i ∈M . Each item is only seen
once. This problem is trivial if the memory size is unlimited
(we can keep a counter for each type of item). To make
it meaningful, we restrict the memory size to l < m. In
this case, it is not straightforward what counters to keep in
memory.

The solution5 given by [7] is simple and elegant. When there
are less than l counters, it adds a new counter to the memory

5A tutorial of Frequent Items can be found in
http://www.cs.berkeley.edu/~satishr/cs270/
sp11/rough-notes/Streaming-two.pdf



buffer when encountering a new type of item. If the number
of counters reaches l, it decrements all the counters. If a
counter reaches 0, it is discarded. It can be proved that

the estimated frequency f̃i of item i satisfy the property:

fi − n
l
≤ f̃i ≤ fi. The proof can be found in the above web

link, [7] and [5].

1.4 Frequent Directions
Notations: A the original large matrix. B the sketch of the
large matrix, starting with all empty rows. B is kept as a
“buffer”. ai: the i-th row of A. We look at one row of A at
a time.

Frequent Directions (FD) share the following several ideas
with FI:

• If B still has empty rows, it is natural to just insert ai
into B.

• If B is full, we do a SVD on B: [U S V]=svd(B).
After the SVD, B = SV T . Singular values serve as
a continuous version of “counters” of important direc-
tions (the larger the singular value, the more variabil-
ity/information alone the direction). We “decrement
the counters” by decreasing the singular values with
some heuristics. When some singular values becomes
0, some corresponding rows become empty again. So
we can accommodate new rows from A.

• Theoretical bounds can be shown on the time, space
and approximation quality (as we will discuss in the
rest of the report).

2. FREQUENT DIRECTIONS ALGORITHM
AND ITS GENERALIZATION

2.1 Previous algorithms
For the sake of completeness, we list the all previous algo-
rithms for Frequent Directions (FD) below and give each
one a brief description.

First, as suggested by [2], all the previous FD algorithms
share the same structure as follows (Algorithm 1. The dif-
ference between them are the ways of reducing the ranks of
the singular values.

Algorithm 1 Frequent Directions algorithm for [2], [5] and
[3]

Input: A,l,α
Output: B
Code:
Initialize B to be a empty matrix of size l by d
for i = 1 to n do

Insert ai to the first nonzero row of B
if B has no nonzero row left then

[U, S, V] = svd(B)
C = SV T // only for proof purpose
S’ = ReduceRank(S)
B = S′V T

end if
end for

First, the original FD paper [5] uses the following Reduc-
eRank algorithm (Algorithm 2).

Algorithm 2 Function: ReduceRank of [5]

Input: S, α
Output: S′

Code:
δi = σ2

l/2

S’ = {
√
σ2

1 − δi,
√
σ2

2 − δi, ...,
√
σ2
l − δi}

// for each negative σ2
j − δi, set

√
σ2
j − δi zero.

SetToDiagMatrix(S’) //set S’ to a diagonal matrix form
return S’

Advantages: it zeros out half of the singular values every
iteration, so it is very fast (O(n/l) iterations in total).

Disadvantages: (1) it is not immediately clear how to de-
rive relative error bounds using this deltai = σl/2. At least
nobody has given such a proof in the literature. In fact, we
show it is not difficult, as we are going to prove the relative
error bounds for its generalization. (2) the approximation
quality is generally lower (see experiments) as one zeros out
more singular values. However, this problem is again ad-
dressed by our Generalized Frequent Directions, where we
can zero out many singular values while bounding the errors.

Then, the first follow-up paper [3] uses the following Re-
duceRank algorithm (Algorithm 3).

Algorithm 3 Function: ReduceRank of [3]

Input: S, α
Output: S′

Code:
δi = σ2

l

S’ = {
√
σ2

1 − δi,
√
σ2

2 − δi, ...,
√
σ2
l − δi}

// note that σ2
j − δi cannot be negative, but can be 0 if

σj = σl
SetToDiagMatrix(S’) //set S’ to a diagonal matrix form
return S’

Advantages: it provides relative error bounds (but only for
δi = σl)

Disadvantages: (1) it zeros out only one singular values
every iteration, so it is very slow (O(n) iterations6 in total.
It is probably too slow for any practical data. (2) the per-
formance is not ideal because it decreases all the singular
values by the same amount every iteration. It turned out
to be not an ideal heuristic in practice, which does not have
any theoretical advantage either.

6The number of iterations is the primary variability in the
time complexity because the dominantly time consuming
step is SVD, which is done once per iteration.



Finally, the second follow-up paper [2] uses the following
ReduceRank algorithm (Algorithm 4).

Algorithm 4 Function: ReduceRank of [2]

Input: S, α
Output: S′

Code:
δi = σ2

l

S’ = {σ1, σ2, ..., σl(1−α),
√
σ2
l(1−α)+1 − δi, ...,

√
σ2
l − δi}

// for each negative σ2
j − δi, set

√
σ2
j − δi zero.

SetToDiagMatrix(S’) //set S’ to a diagonal matrix form
return S’

Advantages: (1) it provides relative error bounds (but only
for δi = σl) (2) it largely improved the approximation qual-
ity by using a heuristic of reducing only the last α∗l singular
values.

Disadvantages: it zeros out only one singular values every
iteration, so it is very slow (O(n) iterations in total). It is
probably too slow for any practical data. (2) Although the
this new heuristic is good in practice, we wonder:can we
do better? Are there other similar heuristics that work as
well and also allow relative error bounds?

2.2 Our Algorithm
In our generalized algorithm, we aim at addressing all the
disadvantages of the previous algorithms.

To summarize the previous algorithms:

• The previous algorithms share very similar structures.
It is natural to think about unifying them. Ideally, the
unified algorithm should have the additive and relative
error bounds. The proofs of such bounds are the main
contributions of this report.

• The previous algorithm with relative bounds have a
time complexity of O(n) iterations. We should im-
proved it to O(n/l) iterations while maintaining all
the error bounds.

Our GFD algorithm addresses these problems by providing a
large class of algorithms with provable additive and relative
error bounds. These algorithms are conveniently parame-
terized by a few variables. So one could write the code once
and try any of them easily.

The main function of GFD is shown as follows (Algorithm
5):

Algorithm 5 Generalized Frequent Directions (GFD)

Input: A,l,α
Output: B
Code:
Initialize B to be a empty matrix of size l by d
for i = 1 to n do

Insert ai to the first nonzero row of B
if B has no nonzero row left then

[U, S, V] = svd(B)
C = SV T // only for proof purpose
S’ = GeneralizedReduceRank(S)
B = S′V T

Permute rows of B s.t. the empty rows of B
are brought to the end

end if
end for

Our main contribution is the following “Generalized Reduce
Rank” function (Algorithm 6):

Algorithm 6 Function: GeneralizedReduceRank

Input: S, ~w
Output: S′

Code:
δi = H(~w, S)

S’ = {
√
σ2

1 − w1δi,
√
σ2

2 − w2δi, ...,
√
σ2
l − wlδi}

// for each negative σ2
j − wjδi, set

√
σ2
j − wjδi zero.

SetToDiagMatrix(S’) //set S’ to a diagonal matrix form
return S’

~w = [w1, w2, ..., wl] is a weight vector (for convenience, sym-
bols w and ~w are used interchangeablely. Without a sub-
script, they both denoting the entire weight vector). We
define 0 ≤ wj ≤ 1 (useful for proving lemma 1).

H(,) is a function to determine δi s.t.

δi ≥ 0

∀j , λσ2
pl ≥ wjδi ≥ 0

where λ ≥ 1 is a constant and p is a constant ∈ (0, 1], which
means the 100 ∗ p% percentile of singular values (e.g., σ0.9

should be larger than 90% of the singular values). This is
important because we want to upper bound the amount of
singular value we decrease by a multiple of percentile of the
singular values, which is useful to prove lemma 1 and help
to get relative error bounds.

It is optional to add a lower bound s.t. ∀j wjδi ≥ σplowl,
where plow ≤ p means another percentile. It reduces the
number of iterations but does not affect the approximation
bounds.

The λ is a scaling factor that adds more flexibility to the
algorithm without affecting the theoretical bounds. When
combined with the weights w, we are able to represent many
more strategies of decreasing singular values. Currently, we
have not found any interesting use of λ. So we can set it
to 1 in most of the cases. Again, we added λ since it im-



proves the expressive power of the model without affecting
the provability of bounds.

The weights w are useful in many ways: (1) it allows us to
explore a large number of algorithms and perhaps interpo-
lations between known algorithms (2) when combined with
some other objectives, the weights may be tuned in some
interesting ways.

Note that the permutation of rows of B in the main algo-
rithm is NOT necessary if wj (see GeneralizedReduceRank
function) is non-decreasing as j increases, since in which
case a larger singular value will not be reduced to 0 be-
fore all smaller singular values are reduced to 0. Also, non-
decreasing wj seems to make more sense in practice (unless
other special objectives are used).

2.3 Previous Algorithms as Special Cases
As said before, the algorithms in [5],[3] and [2] are special
cases of our GFD algorithm. We will show how to choose
H(,) and wj to get the algorithms in above papers.

In the following text, we first describe in English that what
the algorithm does and then give the GFD parameters
that makes our GFD algorithm exactly the same as the de-
scribed algorithm:

1. In [5], everytime when B is full, we decrement the all
squared singular values by σ2

l/2 (and then take a square
root).
GFD parameters: H(,) returns σ2

l/2. ∀j wj = 1;
λ = 1; Choose p such that σpl = σl/2

2. In [3], everytime when B is full, we decrement all
squared singular values by σ2

l (and then take a square
root).
GFD parameters: H(,) returns σ2

l . ∀j wj = 1.
λ = 1; Choose p such that σpl = σl

3. In [2], everytime when B is full, we keep the first l ∗
(1 − α) singular values unchanged, and we decrement
the rest squared singular values by σ2

l (and then take
a square root), where α ∈ (0, 1) is a constant.
GFD parameters: H(,) returns σ2

l . ∀j ≤ l ∗ (1 −
α), wj = 0 and ∀j > l ∗ (1 − α), wj = 1. λ = 1;
Choose p such that σpl = σl.

3. ANALYSES
In this section, we provide theoretical analyses, approxima-
tion, runtime and space bounds for our Generalized Fre-
quent Directions Algorithm. We adapted many procedures
from [5],[3] and [2]. Since our model is a generalized ver-
sion of [5],[3] and [2], we are NOT re-proving the proper-
ties. Instead, we are showing our original work, although
the proofs bear many similarities with [5],[3] and [2]. Our
bounds are slightly different due to our new parameters in-
troduced. Also, we think our proofs are more organized than
[5],[3] and [2] because we groupped analogous properties into
same lemmas.

3.1 Notations
• A: the original matrix of size n by d, where n is the

number of samples and d is the number of feature di-
mensions of a sample.

• B: the matrix sketch, the output matrix. It is of size
l by d. O(dl) is basically the space requirement of this
algorithm.

• σj : the j-th singular value. Note that singular values
are sorted in descending order. So σj < σj+1,∀j.

• S: the singular value matrix, which is a diagonal ma-
trix

• Ci: the C matrix (see the pseudocode above) of the
i-th iteration.

• Bi: the intermediate B matrix (see the pseudocode
above) of the i-th iteration. It is after the reduction
of singular values and before the permutation (but ac-
tually permutation does not affect any of our analyses
because ||Bix||2 and ||Bi||2F are invariant under the
permutations of rows of Bi).

3.2 Three Lemmas for Proving the Bounds of
Approximation Errors

In this section, we will present three lemmas that help us
prove the additive and relative bounds of approximation er-
rors. Most contents of this section are pure mathematical
derivations. Readers are encouraged temporally skip this
section and look at the Section 3.3 and Section 3.4 to learn
about what those bounds are — we will refer back to the
lemmas from there.

Lemma 1 Motivation: First we will introduce Lemma 1
that capture the differences of the matrix sketch B before
and after reducing the singular values. C is used to denote
the state before decreasing, while B is used to denote the
state of B after decreasing. See Algorithm 5 for details of
this notation.

Lemma 1:

∀x s.t.||x||2 = 1

0 ≤||Cix||2 − ||Bix||2 = δi

j=l∑
j=1

wj〈vj , x〉2 ≤ δi

(1)

δi
λ

(1−p)l+1∑
j=1

wj ≤||Ci||2F − ||Bi||2F ≤ δi
j=l∑
j=1

wj (2)

Proof: First, note that ||Bix||2 and ||Bi||2F are invari-
ant under the permutations of rows of Bi. So we can
prove the lemma for the Bi before the permutation. The
same inequalities hold after the row permutation.



Let us prove the right side of the inequality:

||Cix||2 − ||Bix||2

= ||SiVix||2 − ||S′iVix||2

=

j=l∑
j=1

(σj〈vj , x〉)2 −
j=l∑
j=1

(σ′j〈vj , x〉)2

=

j=l∑
j=1

(σ2
j − σ′2j )〈vj , x〉2

=

j=l∑
j=1

wjδi〈vj , x〉2

= δi

j=l∑
j=1

wj〈vj , x〉2 by 0 ≤ wj ≤ 1

≤ δi
j=l∑
j=1

〈vj , x〉2 by

j=l∑
j=1

〈vj , x〉2 = 1, ∀unit x

= δi

the left side of the inequality is easy:

||Cix||2 − ||Bix||2

= δi

j=l∑
j=1

wj〈vj , x〉2 by 0 ≤ wi ≤ 1

≥ 0 by nonnegativity of terms

Let’s then prove second inequality:

||Ci||2F − ||Bi||2F
= ||SiVi||2F − ||S′iVi||2F

=

j=l∑
j=1

σ2
j −

j=l∑
j=1

σ′2j

=

j=l∑
j=1

(σ2
j − σ′2j )

Recall that we want to prove:

(1−p)l+1∑
j=1

wj
δi
λ
≤

j=l∑
j=1

(σ2
j − σ′2j ) ≤

j=l∑
j=1

wjδi

Recall the property of H(,), ∀j , λσ2
pl ≥ wjδi ≥ 0, where

λ ≥ 1 is a constant and p is a constant ∈ (0, 1].

Let us analyse the lower bound of
∑j=l
j=1(σ2

j − σ′2j ):

• Let us think about the easy case when λ = 1, σ2
pl ≥

wjδi. After subtracting wjδi from each squared sin-
gular value, it is clear that at least (1 − p)l + 1 sin-
gular values (top (1 − p)l + 1 ones) are non-negative.
So wjδi was substracted entirely from them. That is
∀ i = 1, ..., (1 − p)l + 1, σ2

j − σ′2j = wjδi. For the rest
of the singular values, there is no guarantees, that is,
∀ i = (1− p)l+ 2, ..., l, σ2

j −σ′2j ≤ wjδi. So
∑j=l
j=1(σ2

j −
σ′2j ) ≥

∑(1−p)l+1
j=1 wjδi.

• In the case when λ ≥ 1, λσ2
pl ≥ wjδi. So σ2

pl ≥
wjδi
λ

.
Thus, at least (1 − p)l + 1 squared singular values
(top (1 − p)l + 1 ones) are non-negative after sub-

stracting W =
wjδi
λ

from them. However, the true
value substracted from them is greater than W , so

∀ i = 1, ..., (1 − p)l + 1, σ2
j − σ′2j ≥

wjδi
λ

. Therefore,∑j=l
j=1(σ2

j − σ′2j ) ≥
∑(1−p)l+1
j=1 wjδi

λ
.

Integrality and comments about p and l: For the sake
of mathematical rigorousness, we assume can only choose the
percentile p such that pl is an integer. Suppose we have l sin-
gular values σ1, σ2, ..., σl sorted in descending order (WLOG
assuming strictly descending) from left to right. If we de-
crease σ2

pl (the pl-th singular value from right to left) from
each squared singular values, the pl-th result (from right
to left) is 0. The pl-th result from right to left is the
(1− p)l+ 1-th result from left to right. So the (1− p)l-th
result is the first positive value and the (1− p)l+ 2 result is
the first negative value (both from left to right).

Thus, we have:∑(1−p)l+1
j=1 wjδi

λ
≤

j=l∑
j=1

(σ2
j − σ′2j )

The upper bound of
∑j=l
j=1(σ2

j − σ′2j ) is obvious. Because

∀ j, σ′2j = max(σ2
j − wjδi, 0), each squared singular value

cannot decrease more than wjδi. Summing over all j, we

get ||Ci||2F − ||Bi||2F ≤
∑j=l
j=1 wjδi.

Therefore,

(1−p)l+1∑
j=1

wj
δi
λ
≤

j=l∑
j=1

(σ2
j − σ′2j ) ≤

j=l∑
j=1

wjδi

�

Lemma 2 Motivation: In the Lemma 2, we are going to
relate the samples added every iteration to the difference of
B before and after reducing rank.

Lemma 2: let Di be all the samples inserted to the blank
areas of Bi−1. We know first t samples in Ci are Bi−1 and



the rest are Di.

∀x s.t.||x||2 = 1

||Dix||2 = ||Cix||2 − ||Bi−1x||2 (3)

||Di||2F = ||Ci||2F − ||Bi−1||2F (4)

Proof: Recall that we initialize B to be a empty matrix,
so ||B0||2F = 0 and ||B0x||2 = 0. It is easy to verify that
||D1x||2 = ||C1x||2 and ||D1||2F = ||C1||2F . So these equa-
tions hold for i = 1.

Let the j-th sample of Ci be cj . We know first t samples in
Ci are Bi−1 and the rest are Di.

For the first equality:

||Cix||2 − ||Bi−1x||2

=

j=t∑
j=1

(cjx)2 +

i=l∑
i=t+1

(cjx)2 −
j=t∑
j=1

(cjx)2

=

i=l∑
i=t+1

(cjx)2

= ||Dix||2

The first transition ||Bi−1x||2 =
∑j=t
j=1(cjx)2 is correct be-

cause the first t samples in Ci are Bi−1.

For the second equality:

||Ci||2F − ||Bi−1||2F

=

j=t∑
j=1

||cj ||2 +

i=l∑
i=t+1

||cj ||2 −
j=t∑
j=1

||cj ||2

=

i=l∑
i=t+1

||cj ||2

= ||Di||2F

The first transition ||Bi−1||2F =
∑j=t
j=1 ||cj ||

2 is correct be-
cause the first t samples in Ci are Bi−1.

�

Lemma 3 Motivation: In Lemma 1 and 2, we studied
relationships between the sample encountered per iteration
and B before and after reducing rank. In this lemma, we will
combine Lemma 1 and 2 to derive the relationship between
all the samples (i.e., A) and the final B. This is easily done
by adding up the inequalities/equalities of all iterations and
telescope all the intermediate terms.

Lemma 3: Let ∆ =
∑
i δi.

∀x s.t.||x||2 = 1

0 ≤||Ax||2 − ||Bx||2 ≤ ∆ (5)

||A||2F − ||B||2F ≥
∆

λ

(1−p)l+1∑
j=1

wj (6)

Proof: For the inequality (first one), we use Lemma 2 Equa-
tion (3). Say there are T iterations in total (i.e., Bq is B).

||Ax||2

=

i=T∑
i=1

||Dix||2

=

i=T∑
i=1

(||Cix||2 − ||Bi−1x||2) by Lemma 2

≤
i=T∑
i=1

(||Bix||2 + δi − ||Bi−1x||2) by Lemma 1

= ||BTx||2 +
∑
i

δi − ||B0x||2

= ||Bx||2 +
∑
i

δi

= ||Bx||2 + ∆

||Ax||2

=

i=T∑
i=1

(||Cix||2 − ||Bi−1x||2) by Lemma 2

≥
i=T∑
i=1

(||Bix||2 − ||Bi−1x||2) by Lemma 1

= ||BTx||2 − ||B0x||2

= ||Bx||2

Thus, 0 ≤ ||Ax||2 − ||Bx||2 ≤ ∆

For the second inequality, we use Lemma 2 Equation (4)

||A||2F

=

i=T∑
i=1

||Di||2F

=

i=T∑
i=1

(||Ci||2F − ||Bi−1||2F ) by Lemma 2

≥
i=T∑
i=1

(||Bi||2F +
δi
λ

(1−p)l+1∑
j=1

wj − ||Bi−1||2F ) by Lemma 1

= ||BT ||2F +

∑
i δi

λ

(1−p)l+1∑
j=1

wj − ||B0||2F

= ||B||2F +
∆

λ

(1−p)l+1∑
j=1

wj

Thus, ||A||2F − ||B||2F ≥ ∆
λ

∑(1−p)l+1
j=1 wj

�



3.3 Additive Error Bound for Generalized Fre-
quent Directions

Theorem 1: Additive Error Bound for Generalized
Frequent Directions.

We want to minimize ||ATA−BTB||2 = maxx:||x||=1(||Ax||2−
||Bx||2).

We will give a bound on ||Ax||2 − ||Bx||2. We will show:

∀x s.t.||x||2 = 1

0 ≤||Ax||2 − ||Bx||2 ≤ ε||A||2F (7)

Proof:

∆ ≤ λ∑(1−p)l+1
j=1 wj

||A||2F Lemma 3Equation(6)

0 ≤ ||Ax||2 − ||Bx||2 ≤ λ∑(1−p)l+1
j=1 wj

||A||2F Lemma 3Equation(5)

Then we choose p, w and l such that ε = λ∑(1−p)l+1
j=1 wj

.

Interpretation: This bound tells us that alone all direc-
tions x, A and its approximation B are close enough.

Comments: As a rule of thumb, the higher the p, the higher
the upper bound of decrease, the less iterations the algo-
rithm needs and the faster the algorithm is.

Note that it is not completely straightforward/meaningful to
discuss the range of ε since GFD is NOT a single algorithm,
it is instead a collection of algorithms. They are very diverse,
some of which are good and some of which are bad. In order
to discuss ε, one needs to fix some parameters such as w
and λ. Our contribution is that for any of the algorithms in
GFD, we can examine its additive error bound and relative
error bound by simply plugging in the parameters (instead
of deriving it again).

�

3.4 Relative Error Bounds for Generalized Fre-
quent Directions

Mimicing the procedures of [2], we provide relative error
bounds for our algorithm.

We will think from a low-rank approximation perspective.
Let us use Ak to denote the rand k approximation of matrix
A using standard SVD. Let us say [U S V] = svd(A). Then
Ak = UkSkV

T
k , where Uk, Sk, Vk are the first k columns of

U, S, V .

Let Bk be the rank k approximation of B, that is Bk =
S′kV

T
k , where the S′k, Vk here are the first columns rows of

S′, V in the each iteration of our algorithm.

Let’s assume the ideal rank k approximation is provided by
SVD on the original data. We can evaluate our Frequent-
Direction(FD) based rank k approximation by comparing to
the approximation obtained by SVD:

• Goal find a rank k approximation of A using our al-
gorithm (instead of directly using SVD, since SVD on
A is expensive).

• Approximation algorithm: Run our Generalized
FD algorithm to get B. Let the first k rows of B be Bk.
As suggested by [2] and discussed in the introduction
section, the approximated rank k approximation of A

is Ãk = ABTk (BkB
T
k )+Bk, where (.)+ means taking

the Moore-Penrose Pseudoinverse. It means projecting
A onto the rowspace spanned by Bk.

There is a property about Ãk: if we run SVD on B
to get right singular vectors V and pick the first k

columns from it, calling it Vk, then ||Ãk||2F = ||AVk||2F .
Actually, this property holds for any (even random)
A and B. We will use this property in the proof of
Theorem 2. It is easy to verify this property.

• The quality of approximation: We can measure

the quality of our FD-approximation Ãk by comparing
its error to that of the SVD-approximation Ak. That
is, we will show below that

||A− Ãk||2F ≤ (1 + ε)||A−Ak||2F

Theorem 2: the bound for relative error of matrix
sketching: We will show the following:

||A− Ãk||2F ≤ (1 + ε)||A−Ak||2F

In order to prove this theorem, we first prove a lemma:

Lemma 4:

∀x s.t. ||x||2 = 1

||Ax||2 − ||Bx||2 ≤ ∆ ≤ ||A−Ak||2F∑(1−p)l+1
j=1 wj

λ
− k

(8)

(9)

Proof: Let vi be the i-th singular vector of A.

∆

λ

(1−p)l+1∑
j=1

wj

≤ ||A||2F − ||B||2F by Lemma 3

=

k∑
j=1

||Avj ||2 +

d∑
j=k+1

||Avj ||2 − ||B||2F property 1

=
k∑
j=1

||Avj ||2 + ||A−Ak||2F − ||B||2F property 2

≤
k∑
j=1

||Avj ||2 + ||A−Ak||2F −
k∑
j=1

||Bvj ||2 property 3

=

k∑
j=1

(||Avj ||2 − ||Bvj ||2) + ||A−Ak||2F

≤ k∆ + ||A−Ak||2F Lemma 1



Thus

∆

λ

(1−p)l+1∑
j=1

wj ≤ k∆ + ||A−Ak||2F

∆(−k +
1

λ

(1−p)l+1∑
j=1

wj) ≤ ||A−Ak||2F

∆ ≤ ||A−Ak||2F∑(1−p)l+1
j=1 wj

λ
− k

||Ax||2 − ||Bx||2 ≤ ||A−Ak||2F∑(1−p)l+1
j=1 wj

λ
− k

lemma 1

Property 1:

||A||2F =

d∑
j=1

||Avj ||2

=

k∑
j=1

||Avj ||2 +

d∑
j=k+1

||Avj ||2

Property 2:

d∑
j=k+1

||Avj ||2 = ||A−Ak||2F

Proof: Let uj be the j-th left singular vector,

d∑
j=k+1

||Avj ||2 =

d∑
j=k+1

||ujσj ||2 SV D definition

=

d∑
j=k+1

σ2
j ||uj || = 1

=

j=d∑
j=1

σ2
j −

j=k∑
j=1

σ2
j

= ||A||2F − ||Ak||2F
= ||A−Ak||2F Pythagorean Theorem[2]

Property 3: Let hi be the i-th column of the right singular
vectors of B

k∑
j=1

||Bvj ||2 ≤
k∑
j=1

||Bhj ||2 ≤ ||B||2F

�

Proof of Theorem 2: Similar to [5]. Let vi be the i-
th column of Vk (the first k columns of the right singular
vectors of B). Note: vi was the right singular vector
of A in lemma 4. Do not be confused.

Let qi be the i-th column of the right singular vectors of A
(which is never actually computed but we just use it for the
proof).

||A− Ãk||2F
= ||A||2F − ||Ãk||2F Pythagorean Theorem

= ||A||2F − ||AVk||2F

= ||A||2F −
k∑
i=1

||Avi||2

≤ ||A||2F −
k∑
i=1

||Bvi||2 By Lemma 1

≤ ||A||2F −
k∑
i=1

||Bqi||2
k∑
i=1

||Bvi||2 ≥
k∑
i=1

||Bqi||2

≤ ||A||2F −
k∑
i=1

(||Aqi||2 −∆)

= ||A||2F − ||Ak||2F + k∆

= ||A−Ak||2F + k∆

≤ ||A−Ak||2F + k
||A−Ak||2F∑(1−p)l+1
j=1 wj

λ
− k

Lemma 4

= (1 +
k∑(1−p)l+1

j=1 wj

λ
− k

)||A−Ak||2F

Thus

||A− Ãk||2F ≤ (1 +
k∑(1−p)l+1

j=1 wj

λ
− k

)||A−Ak||2F

Note that I use
∑
j wj and

∑j=l
j=1 wj interchangeablely.

If we choose wj and p such that k∑(1−p)l+1
j=1

wj

λ
−k

= ε, we get:

Again, note that it is not completely straightforward/mean-
ingful to discuss the range of ε since GFD is NOT a single
algorithm, it is instead a collection of algorithms. They are
very diverse, some of which are good and some of which are
bad. In order to discuss ε, one needs to fix some parame-
ters such as w and λ. Our contribution is that for any of
the algorithms in GFD, we can examine its additive error
bound and relative error bound by simply plugging in the
parameters (instead of deriving it again).

||A− Ãk||2F ≤ (1 + ε)||A−Ak||2F

�

3.5 Time Complexity
The time complexity of this algorithm is basically deter-
mined by the number of iterations, which depends on the
parameters (H(,) and w).

The number of iterations depends on how many singular
values are decreased to 0 in each iteration. Each 0 singular



value will clear one row of B. In paper [3] and [2], the
algorithm guarantees that at least one singular value is set to
0 every iteration. So there will be O(n) iterations, implying
O(n) small SVD operations, which is very slow in practice.
In the original paper [5], the algorithm guarantees that half
of the singular values are set to 0, which is considerably
faster. It only requires O(n/l) iterations. Since the above
algorithms are special cases of GFD, we can achieve either
of properties above.

In general, GFD algorithm can do better than O(n) itera-
tions, if we set a lower bound of decrement of squared singu-
lar values to be a percentile of the squared singular values.
In this case, we zero out O(l) singular values per iteration
and thus process O(l) samples per iteration (i.e., per SVD).
The number of SVD performed is O(n/l) throughout the
entire algorithm (just like [5]). This does not affect any
bounds we derived, because we did not assume any lower
bound requirement of the decrement in any of the proofs.

3.6 Space Complexity
The space complexity of this algorithm is the size of matrix
B, which is O(dl).

4. MONOTONIC GENERALIZED FREQUENT
DIRECTIONS (MGFD)

There are many parameter choices in GFD, each of them
corresponds to an sketching algorithm. We cannot exhaus-
tively explore all of them. In this report, we just explored
one family of algorithms called Monotonic Generalized
Frequent Directions (mGFD). A mGFD models w as a
sigmoid function 1

1+eω(τ−x) to reduce the number of param-

eters. We choose δi = H(, ) = σi and σpl to be two of the
percentiles of the sigular values. Thus, we have the following
parameters in mGFD:

• τ ′ ∈ (0, 1): τ ′ = τ
l

where τ is defined above as the
“offset” of the sigmoid function. It is more convenient
to have a ratio than an absolute value since the sketch
length l may change very often.

• ω′ ∈ (0,+∞): ω′ = ω
l
, where ω is defined above as

the “smoothness” of the sigmoid function. The lower
the ω′, the smoother the sigmoid function is. Again,
it is more convenient to have a ratio than an absolute
value. Because for a fixed ω′, the function keeps the
same shape across different buffer sizes l.

• δi = σi: the amount of decrease before multiplying
weights. It is the return value of H(, ).

• σpl: the upper bound of decrease (percentile) before
multiplying the scaling factor

• σplowl: the lower bound of decrease percentile (op-
tional. It provides O(n/l) bound for the number of
iterations if used. It does not affect other theoretical
bounds.)

• λ: the scaling factor of the upper bound.

Note that here we only explore the monotonic increasing
version of mGFD.

We show the matlab code to get sigmoid arrays below and
examples of sigmoid arrays with different lengths parameters
(Appendix Figure 16 and 17). Note that we did not try
monotonic decreasing sigmoid functions in our experiments.

1 function output = sigmoid_array ...
2 (length,steepness_ratio,shift_ratio)
3 array = 1:length - 1;
4 steepness = steepness_ratio/length;
5 shift = length*shift_ratio;
6 output = 1./( ...

1+exp(steepness*(shift-array)) );

5. EXPERIMENTS
We implemented our GFD algorithm and explored the pa-
rameter space of mGFD on Spam, Birds and Adversarial
datasets from [2] to evaluate its performance in practice.

5.1 Experimental settings
Experiments were run on a 2010 machine with an 8-core
processor and 36GB RAM. The operating system is Ubuntu
12.04. The programming language is Matlab, which is very
standard for linear algebra experiments. The experiments
about approximation errors are not dependant on running
time. The running time experiments were conducted multi-
ple times and the average is chosen such that it is not very
influenced by any programming language overhead. In fact,
the code is simple and there is little overhead. And Matlab
is optimized for linear algebra operations.

5.2 Datasets
We used the spams, birds and the Adversarial datasets from
[2].

• Spam: Each row represents a spam message. Each
column is the features of that spam message. “This
dataset has has dramatic and abrupt feature drift over
the stream, but not as much as Adversarial”7.

• Birds: Each row represents an image of a bird. Each
column is the features of that image.

• Adversarial8: in order to model dramatic change over
the stream, the authors constructed two orthogonal
spaces π1 and π2 and project random noise points onto
them. All points projected to π1 comes before the
points projected to π2 so that the points in the second
half of the stream are in a very different distribution
from those in the first half.

7Quotes from [2]
8The name adversarial comes from the fact that it makes
iSVD very bad in [2]. It is not really “adversarial” here
because our models work well on it.



5.3 Evaluation criteria
The evaluation criteria are the same as [2]. We mainly used
two error measures, corresponding to the additive bound
and relative bound, respectively.

• Covariance error: ||ATA−BTB||2/||A||2F

• Projection error: ||A− Ãk||2F /||A−Ak||2F

The k is the projection rank. Recall that Ãk = ABTk (BkB
T
k )+Bk,

where Bk is the first k ≤ l rows of B. Instead of setting
k = 10 as in [2], we set k = 20 in most of the experiments
and also tried varying k with a fixed sketch size.

5.4 Tested Algorithms
1. FD: the original algorithm in [5]:

2. FD-last: the algorithm in [3]. Same as FD but reduc-
ing the squared singular values by the amount of the
square of the last singular value instead of that of the
50-percentile singular value.

3. 0.2-FD: the algorithm in [2]. The best known algo-
rithm before this report.

4. mGFD (w monotonic non-decreasing ones)

5.5 mGFD parameters
We explored the parameters space of mGFD as follows:

• Offset/shift τ ′: 0.1, 0.3, 0.5, 0.7, 0.9, 0.95

• Steepness ω′: 1, 5, 10, 20, 50, 100, 300, 600, the higher
the less smooth the curve

• δi = σi the amount (percentile) of decrease before mul-
tiplying weights:, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 (e.g., 0.7
means decreasing by the 70th percentile singular value,
which is exactly greater than 70% of the singular val-
ues.)

• σpl: the upper bound (percentile) of decrease before
multiplying λ: 0.05, 0.1, 0.3, 0.5, 0.7, 0.9 (e.g., 0.1
means bounding the decrease by the 10th percentile
singular value, which is exactly no more than 10% of
the singular values.)

• σplowl = 0.01. Lower bound of the decrease. It re-
duces the number of iterations but does not affect the
approximation bounds.

• Scaling factor λ = 1. This means we do not scale the
decrease of the singular values

This is not a very fine-grained parameter space. However we
can get a rough idea of the performance of mGFD models.
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Figure 2: Results on the Spam Dataset: Covariance
error vs. sketch size.

5.6 Results on Spam Dataset
5.6.1 Scatter plot of mGFD models

In Figure 1, we plot each mGFD in our parameter space
as a point in a 2-D space, where the y-axis represents its
projection error and the x-axis represents its covariance er-
ror. Each model is plotted as a number, which represents its
average running time. We also plot the 0.2-FD model (the
previous best model) as a solid green dot in the plot. For
this plot we choose k = 20 and sketch size = 150. The run-
ning time of 0.2-FD 276.7716 seconds (on exactly the same
machine and same settings).

There are several observations:

1. At least in our parameter space of mGFD, there are
better performing ones than 0.2-FD.

2. 0.2-FD is about one order of magnitude slower than
most of our mGFD models.

5.6.2 Performance vs. sketch size
To see the performance vs. sketch size. We arbitrarily pick
a relatively good mGFD configuration (may not be the best)
with parameter being τ ′ = 0.90, ω′ = 50, σi = 0.7, σpl = 0.1.
Figure 2 shows the covariance error and Figure 3 shows the
projection error, compared with previous algorithms.

5.6.3 Runtime Comparison
With the same mGFD configuration above, we could com-
pare the runtime of different algorithms. Notably, mGFD is
more than one order of magnitude faster than 0.2-FD while
having the same (even better approximation quality). This
is shown in Figure 4.

5.6.4 Projection error vs. Projection k
With the same mGFD configuration above, we could also
show in Figure 5 the projection error vs. the rank k that we
are reducing the matrix to. The sketch size is 150.
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Figure 1: Results on the Spam Dataset [2]: Plot each mGFD model as a number. The y-axis represents its
projection error and the x-axis represents its covariance error. The number represents its average running
time in seconds. 0.2-FD (the previous best model [2]) as a solid green dot in the plot. The running time of
0.2-FD 276.7716 seconds, one order of magnitude slower than most mGFDs.
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Figure 3: Results on the Spam Dataset: Projection
error vs. sketch size. The projection rank k = 20.
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Figure 4: Results on the Spam Dataset: runtime
comparison. The projection rank k = 20.
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Figure 5: Results on the Spam Dataset: projection
error vs. projection rank k. The sketch size is 150.

5.7 Results on Birds Dataset
5.7.1 Scatter plot of mGFD models

In Figure 6, we plot each mGFD in our parameter space
as a point in a 2-D space, where the y-axis represents its
projection error and the x-axis represents its covariance er-
ror. Each model is plotted as a number, which represents its
average running time. We also plot the 0.2-FD model (the
previous best model) as a solid green dot in the plot. For
this plot we choose k = 20 and sketch size = 150. The run-
ning time of 0.2-FD 268.0580 seconds (on exactly the same
machine and same settings).

There are several observations:

1. At least in our parameter space of mGFD, there are
better performing ones than 0.2-FD.

2. 0.2-FD is about one order of magnitude slower than
most of our mGFD models.

5.7.2 Performance vs. sketch size
To see the performance vs. sketch size. We arbitrarily pick
a relatively good mGFD configuration (may not be the best)
with parameter being τ ′ = 0.90, ω′ = 50, σi = 0.7, σpl = 0.1.
Figure 7 shows the covariance error and Figure 8 shows the
projection error.

5.7.3 Runtime Comparison
With the same mGFD configuration above, we could com-
pare the runtime of different algorithms. Notably, mGFD is
more than one order of magnitude faster than 0.2-FD while
having the same (even better approximation quality). This
is shown in Figure 9.

5.7.4 Projection error vs. Projection k
With the same mGFD configuration above, we could also
show in Figure 10 the projection error vs. the rank k that
we are reducing the matrix to. The sketch size is 150.
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Figure 7: Results on the Birds Dataset: Covariance
error vs. sketch size
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Figure 8: Results on the Birds Dataset: Projection
error vs. sketch size. The projection rank k = 20.

60 70 80 90 100 110 120 130 140 150
0

50

100

150

200

250

300

Sketch Size

R
u

n
n

in
g
 t
im

e
 (

s
e
c
o

n
d

s
)

 

 

FD

FD−last

0.2−FD

mGFD

Figure 9: Results on the Birds Dataset: runtime
comparison. The projection rank k = 20.
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Figure 6: Results on the Birds Dataset [2]: Plot each mGFD model as a number. The y-axis represents its
projection error and the x-axis represents its covariance error. The number represents its average running
time in seconds. 0.2-FD (the previous best model [2]) as a solid green dot in the plot. The running time of
0.2-FD 268.0580 seconds, one order of magnitude slower than most mGFDs.
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Figure 10: Results on the Birds Dataset: projection
error vs. projection rank k. The sketch size is 150.

5.8 Results on Adversarial Dataset
5.8.1 Scatter plot of mGFD models

In Figure 11, we plot each mGFD in our parameter space
as a point in a 2-D space, where the y-axis represents its
projection error and the x-axis represents its covariance er-
ror. Each model is plotted as a number, which represents its
average running time. We also plot the 0.2-FD model (the
previous best model) as a solid green dot in the plot. For
this plot we choose k = 20 and sketch size = 150. The run-
ning time of 0.2-FD 299.2864 seconds (on exactly the same
machine and same settings).

There are several observations:

1. At least in our parameter space of mGFD, there are
better performing ones than 0.2-FD.

2. 0.2-FD is about one order of magnitude slower than
most of our mGFD models.

5.8.2 Performance vs. sketch size
To see the performance vs. sketch size. We arbitrarily pick
a relatively good mGFD configuration (may not be the best)
with parameter being τ ′ = 0.70, ω′ = 10, σi = 0.1, σpl = 0.1.
Figure 12 shows the covariance error and Figure 13 shows
the projection error.

5.8.3 Runtime Comparison
With the same mGFD configuration above, we could com-
pare the runtime of different algorithms. Notably, mGFD is
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Figure 11: Results on the Adversarial Dataset [2]: Plot each mGFD model as a number. The y-axis represents
its projection error and the x-axis represents its covariance error. The number represents its average running
time in seconds. 0.2-FD (the previous best model [2]) as a solid green dot in the plot. The running time of
0.2-FD 299.2864 seconds, one order of magnitude slower than most mGFDs.

60 70 80 90 100 110 120 130 140 150
0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Sketch Size

C
o
v
a
ri
a

n
c
e
 E

rr
o
r

 

 

FD

FD−last

0.2−FD

mGFD

Figure 12: Results on the Adversarial Dataset: Co-
variance error vs. sketch size
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Figure 13: Results on the Adversarial Dataset: Pro-
jection error vs. sketch size. The projection rank
k = 20.
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Figure 14: Results on the Adversarial Dataset: run-
time comparison. The projection rank k = 20.
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Figure 15: Results on the Adversarial Dataset: pro-
jection error vs. projection rank k. The sketch size
is 150.

more than one order of magnitude faster than 0.2-FD while
having the same (even better approximation quality). This
is shown in Figure 14.

5.8.4 Projection error vs. Projection k
With the same mGFD configuration above, we could also
show in Figure 15 the projection error vs. the rank k that
we are reducing the matrix to. The sketch size is 150.

6. DISCUSSION
We mentioned that by changing GFD parameters, we can
obtain exactly the same algorithms in [5],[3] and [2], without
losing theoretical guarantees. As shown by [2] and our exper-
iments, these algorithms have significantly different runtime,
space and approximation quality in practice. Furthermore,
our parameter space is large and the only configurations we
have explored are the Monotonic (increasing) Frequent Di-
rections. Efficient parameter selection based on online vali-
dations of performance would be an intriguing direction for

future investigation. Evolutionary algorithms or gradient
based learning could be potentially useful.

7. CONCLUSIONS
In this report, we proposed a unified framework Gener-
alized Frequent Directions (GFD) that captures the
results from [5],[3] and [2] as special cases, without losing
any of the theoretical guarantees. We proved the related
time, space and approximation quality bounds. We experi-
mentally explored a class of GFD algorithms called Mono-
tonic Frequent Directions (mGFD) on sythetic and real-
world datasets and show that they achieves the state-of-the
art approximation performance while being at least one or-
der of magnitude faster than the previous best model.
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APPENDIX
A. SINGULAR VALUE DECOMPOSITION

[USV ] = svd(A)

Let us sayA is of size n by d and rank(A) = r. The properties
we might need to use about SVD are:

• U is a n by r matrix, containing right singular vectors

• S is a diagonal matrix of size r by r

• V is a matrix of size r by r, containing right singular
vectors. V are the eigenvectors of the covariance matrix
ATA.

• Vk is the first k columns of V .

• AVk is a dimensional reduction using Principle compo-
nents Analyses (PCA) on A.

• |AVk|2 = |US|2 =
∑k
i=1 σi

B. SOLVING LINEAR LEAST SQUARE PROB-
LEM

Task: suppose we have matrix Y ∈ Rn×d and X ∈ Rl×d,
where l < n, find a W ∈ Rn×l such that ||Y −WTX||2F is
minimized:

minW ||Y −WTX||2F

Solution:

minW ||Y −WTX||2F
= Tr{(Y −WTX)T (Y −WTX)}

= Tr{(Y T −XTW )(Y −WTX)}

= Tr(Y TY −XTWY − Y TWTX +XTWWTX)

= ||Y ||2F − Tr(XTWY )− Tr(Y TWTX) + Tr(XTWWTX)

= ||Y ||2F − 2Tr(Y TWTX) + Tr(XTWWTX)

where the last transition works because Tr(AT ) = Tr(A).

Take a derivative of the above equation:

∂||Y −WTX||2F
∂W

=
∂||Y ||2F − 2Tr(Y TWTX) + Tr(XTWWTX)

∂W

=
∂||Y ||2F − 2Tr(XY TWT ) + Tr(XTWWTX)

∂W
property 1

= −2XY T +
∂Tr(XTWWTX)

∂W
property 2

= −2XY T + 2XXTW property 3

property 1: Tr(ABC) = Tr(CAB)

property 2: ∂Tr(AW )
∂W

= AT (See Matrix Cookbook [8])

property 3: ∂Tr(AXBXTC)
∂W

= ATCTXBT + CAXB (See
[8])

Set the derivative to 0, we get:

0 = −2XY T + 2XXTW

XXTW = XY T

W = (XXT )−1XY T

To account for the case where XXT is not invertible, we can
use Moore Penrose pseudoinverse (XXT )+. See Wikipeidia9

So the solution to the Linear Least Square problem is:

W = (XXT )+XY T

WT = Y XT (XXT )+

C. PROJECTION MATRIX
Definition: A square matrix P is a Projection Matrix
iff P 2 = P .

Lemma A.1 P = BTk (BkB
T
k )+Bk is a Projection Matrix.

Proof:

P 2 = (BTk (BkB
T
k )+Bk)(BTk (BkB

T
k )+Bk)

= BTk (BkB
T
k )+(BkB

T
k )(BkB

T
k )+Bk

= BTk (BkB
T
k )+Bk (BkB

T
k )(BkB

T
k )+ = I

= P

D. SIGMOID ARRAYS WITH DIFFERENT
PARAMETERS

Figure 16 and 17. These functions are used as weights w.
The parameters of each sigmoid arrays are shown below each
plot.

9“A common use of the Moore Penrose pseudoinverse is to
compute a ’best fit’ (least squares) solution to a system of
linear equations that lacks a unique solution.”(Quoted from
Wikipeidia Moore Penrose pseudoinverse Page)
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Figure 16: Examples of sigmoid functions (with parameters listed under each plot). They are monotonic
increasing.
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Figure 17: Examples of Flipped sigmoid functions (with parameters listed under each plot). They are
monotonic decreasing. Note that we did not try monotonic decreasing sigmoid functions in our experiments.


