
Vertex Sparsification of Undirected Graphs

Christina Lee (celee@mit.edu)

December 12, 2012

1 Introduction

Graph sparsification was first introduced by Benzcur and Karger [BK96]. Given a graph
G = (V,E), they proposed a randomized algorithm that samples a subset of the edges to con-
struct a capacitated graph G′ = (V,E ′) such that E ′ ⊂ E with edge capacities c : E ′ → R+.
G′ is a (1± ε)-cut sparsifier if the value of any cut over G′ is within a (1± ε) multiplicative
factor of the corresponding cut value in G. Therefore, any algorithmic problem that involves
computing cut values over G can be approximated by the cut values over G′. In fact the
goal is for G′ to be sparse such that |E ′| << |E|, and so that it becomes much more efficient
to compute properties of G′ with fewer edges. Therefore G′ is an edge-sparse approximation
for G. This work was followed by work by Spielman Teng [ST11] to construct sparse graph
approximations that not only preserve cut values, but in fact the entire spectrum of the
Laplacian matrix of the graph.

However, the focus of this paper is different. Instead of finding an edge-sparse approximation
of the graph G over the same set of vertices V , the goal will be to find a graph H = (K,EH)
with edge capacities cH : EH → R+ such that K ⊂ V and EH may not be a subset of E.
Again we will require the “vertex sparsifier” H to preserve properties such as cuts and flows
over K ⊂ V , which will be precisely defined below. This captures a similar idea as edge
sparsifiers, in the sense that we can use this graph H to approximate certain properties of
G, and when |K| << |V |, this could save a lot of computation since we will be computing
over a graph with much fewer vertices.

Vertex sparsifiers were first introduced by Moitra [Moi09]. They are applicable to settings
when we only care about a certain subset of the vertices K ⊂ V . Examples include multi-
commodity flow problems, where we want to route multiple items between different source
and sink terminals. Therefore, the set K is often called the set of “terminal” vertices. Moitra
presented constructions for vertex sparsifiers H where the approximation quality is only de-
pendent on |K|, and not |V |. This is especially surprising when |K| << |V |. Moitra and
Leighton introduced two types of vertex sparsifiers: cut and flow sparsifiers [LM10].

1

Section 1 of this paper provides the formal definitions, notation, and setup for vertex cut
and flow sparsifiers. Section 2 will show that flow sparsfiers are strictly stronger than cut
sparsifiers. We focus on the case of cut sparsifiers for the remaining proofs. Section 3 will
present the existential arguments for cut sparsifiers with intuition and examples. Section 3
will present a polynomial time construction algorithm for cut sparsifiers. Finally Section 5
will conclude by mentioning connections between these proofs for flow and cut sparsifiers, as
well as recent work that has extended these results.

1.1 Cut Sparsifiers

Assume we are given an undirected graph G = (V,E) with edge capacities c : E → R+ and
a subset K ⊂ V of nodes that we are interested in. Throught the paper we always assume
|K| = k. Let δG(A) ⊂ E denote the set of edges in G in the cut (A, V \A). The cut function
of G is defined as follows:

hG(A) =
∑

e∈δG(A)

c(e)

The terminal cut function on K for a subset U ⊂ K is defined as:

h′(U) = min
a∈V s.t.A∩K=U

hG(A)

In words, the terminal cut value of U ⊂ K is the minimum cut over graph G that separates
subsets A and (K \A). An example of this is shown in figure 1, where the terminal nodes are
shown in red, and the cut that achieves the minimum value of h′({1}) is shown in red. The
goal of vertex cut sparsification is to find a graph H = (K,EH) over the terminal vertices
such that the cut function over H upper bounds the terminal cut function.

2

3

4

1

5

Definition 1.1. [Moi09]
H is a vertex cut sparsifier if for all U ⊂ K,

h′(U) ≤ hH(U)

H is a quality α vertex cut sparsifier if for all U ⊂ K,

h′(U) ≤ hH(U) ≤ αh′(U)

2

In words, H is an α quality cut sparsifier if the cut value of U over graph H is within an
α upper bound of the terminal cut value of U over graph G for all U ⊂ K. Note that the
resulting graph H could introduce edges not present in G and result in a dense graph over the
K nodes. In contrast to the former notion of edge sparsifiers [BK96], a vertex cut sparsifier
must strictly upper bound the cut withing some α factor, rather than approximating the cut
within some (1± ε) factor.

1.2 Flow Sparsifiers and Maximum Concurrent Flow

A vertex flow sparsifier is a graph H = (K,EH) over a subset of the original vertices V , that
approximately preserves the congestion of every multicommodity flow with endpoints sp-
ported in K. In fact, flow sparsifiers are generalizations of cut sparsifiers, strictly preserving
more properties of G. To fully define a vertex flow sparsifier, we first define the maximum
concurrent flow problem, which is also a useful concrete application that illustrates the util-
ity of vertex sparsifiers.

Assume we are given an undirected graph G = (V,E), a capacity function c : E → R+

that assigns a non-negative capacity to each edge, and a set of demands D = {(si, ti, di)}.
Each i can be thought of as a commodity such that di units of i need to be routed from
source si to sink ti. Set K = ∪i{si, ti}, such that set K contains only nodes that are either
source or sink for a commodity. The maximum concurrent flow is the largest λ such that λ
fraction of each demand di can be simultaneously satisfied while obeying capacity constraints.

We can formulate this with the following linear program:

λ∗(D) = maxλ

s.t ∀i,
∑

p∈Psi,ti

x(p) ≥ λdi

∀e,
∑
p3e

x(p) ≤ c(e)

∀p, x(p) ≥ 0

This uses an exponential number of variables x(p), which denotes the amount of flow over a
path p. Psi,ti denotes the set of paths from source si to sink ti. The first constraint ensures
that λ fraction of the demand for each item is satisfied. The second constraint ensures that
the flow satisfies edge capacity constraints. The third constraint ensures that the flow is

positive. We overload the notation and let the demand D be represented as a vector R(k
2)

specifying the demand between any pair of terminal nodes in K. Congestion is defined as
cong(D) = 1

λ∗(D)
.

Definition 1.2. [LM10]
H = (K,EH) is a vertex flow sparsifier if for all demands D,

λ∗G(D) ≤ λ∗H(D)

3

H = (K,EH) is a quality α vertex flow sparsifier if for all demands D,

λ∗G(D) ≤ λ∗H(D) ≤ αλ∗G(D)

In words, for any demand D ∈ R(k
2) the vertex flow sparsifier H can concurrently satisfy a

larger fraction of the demand than graph G, within a factor of α.

1.3 Summary of Highlighted Results

Theorem 1.3. [LM10] Given an α-quality vertex flow sparsifier H = (K,EH) for a capaci-
tated graph G = (V,E), H is also an α-quality vertex cut sparsifier for G.

This theorem proves that flow sparsifiers are strictly stronger and more general than cut
sparsifiers. It follows from a simple application of the min-cut max-flow theorem.

Theorem 1.4. [Moi09] For any capacitated graph G = (V,E), for any set K ⊂ V such that
|K| = k, there is an O(log k/ log log k)-quality vertex cut sparsifier H = (K,EH).

This theorem is proved by setting up a two player game, such that the bounds for the game
value imply bounds on the quality of a vertex flow sparsifier. This proof is built on the
0-extension problem.

Theorem 1.5. [CLLM10] For any capacitated graph G = (V,E), for any set K ⊂ V such
that |K| = k, there is an algorithm that computes an O(log k/ log log k)-quality cut-sparsifier
H = (K,EH) in time polynomial in n and k.

Vertex sparsification is written as a linear program with a polynomial number variables and
polynomial number of constraints. Each of the constraints are checkable in polynomial time.
The existence proof guarantees the linear program is feasible. Thus, any linear programming
algorithm such as the ellipsoid algorithm can be used to construct a solution.

2 Flow Sparsifiers vs. Cut Sparsifiers [LM10]

Let’s prove Lheorem 1.3 in two parts. Given an α-quality vertex flow sparsifier H = (K,EH)
for a capacitated graph G = (V,E), H is also a vertex cut sparsifier for G if for all U ⊂ K,

h′(U) ≤ hH(U) ≤ αh′(U)

Lemma 2.1. For all U ⊂ K,h′(U) ≤ hH(U).

Suppose that there was some U ⊂ K such that h′(U) > hH(U). Since h′(U) is the min-cut in
G separating U from (K \U), then by the min-cut max-flow theorem, there is some feasible
flow in G from U to (K \U) such that the total flow across the cut is exactly h′(U). But since
hH(U) < h′(U), this flow cannot be feasible in H, since it is larger than the corresponding
cut in H. This contradicts the assumption that H is a vertex flow sparsifier for G. Thus the
lemma is proven true by contradiction.

4

Lemma 2.2. For all U ⊂ K,hH(U) ≤ αh′(U).

Choose the flow demand vector D such that the demand di from si to ti is equal to the
capacity cH(si, ti) of that edge in graph H. Therefore, by construction, flow D is feasible in
H, and λ∗H(D) = 1. Suppose that there was some U ⊂ K such that hH(U) > αh′(U). There
will be hH(U) units of demand crossing the cut between U and (K \U) in H. Likewise, there
will be hH(U) units of demand crossing any cut between U and (K \U) in graph G. However

since the minimum cut h′(U) < hH(U)
α

, then a maximum of 1
α

fraction of the demand can be

routed simultaneously in graph G. Thus λ∗G(D) < 1
α
<

λ∗H(D)

α
. However this contradictions

the assumption that H is an α-quality vertex flow sparsifier for G. Thus the lemma is proven
true by contradiction.

Theorem 2.3. Given a flow sparsifier H, the quality of H is equal to the congestion of the

hardest flow d̃ over G, where d̃ ∈ R(k
2)

+ is the demand vector such that for all a, b ∈ K, d̃a,b =
cH(a, b).

This demand d̃ is feasible in graph H by simply saturating all the edges (see this by
construction). In fact, this demand d̃ is the “hardest” demand for G to satisfy. This makes
intuitive sense, because all other flows that are routable in H can be satisfied in G with the
same flow in G that routes this hardest d̃ demand. Since this is the “hardest” demand, the
quality of H as a flow sparsifier is equal to 1

λ∗G(d)
, or the congestion of d over G. Therefore,

finding the quality of a flow sparsifier H can be formulated as a single minimum congestion
routing problem. Following from Theorem 1.3, this can also be used to upper bound the
quality of a cut sparsifier H. Thus we have a polynomial time algorithm to determine the
quality of a vertex sparsifier. We will use this property in the construction algorithm for a
vertex sparsifier.

3 Existence of a “Good” Cut Sparsifier [Moi09]

3.1 0-extension problem

Definition 3.1. f : V → K is a 0-extension if for all a ∈ K, f(a) = a.

Definition 3.2. Given a graph G = (V,E), a set K ⊂ V , and a 0-extension f : V → K, let
Gf = (K,Ef) denote a capacitated graph with capacities defined as:

cf (a, b) =
∑

(u,v)∈E

c(u, v)1{f(u)=a,f(v)=b}

In words, a 0-extension can be thought of as a contraction of the vertices V onto the vertices
K, and Gf is the graph obtained by combining the edges of vertices that are contracted
together. This is illustrated in figure 2.

5

2

3

4

1

5

3

4

1
1

3 2

Lemma 3.3. For any 0-extension f , Gf is a vertex cut sparsifier for G. Equivalently, for
all U ⊂ K, hGf

(U) ≥ h′(U).

This lemma is obvious because any cut over Gf corresponds to a cut over G where each
node x ∈ V is placed on the same side of the cut as its corresponding terminal node f(x).
Therefore, the cut value hGf

(U) is always an upper bound to the true terminal cut value
h′(U) since h′(U) minimizes over other cuts of G separating U and (K \ U). However, this
does not guarantee that it is a good quality cut sparsifier. From figure 2 above, we see that
hGf

({3}) = 4, while h′({3}) = 2, thus indeed hGf
({3}) ≥ h′({3}). In fact for the graph in

figure 2, Gf is a 2-quality vertex cut sparsifier.

In fact, any single 0-extension graph Gf could do really badly for certain cuts. The big idea
is that since different 0-extensions do badly for different cuts, we take a convex combination
of 0-extension graphs, and show that the resulting graph sparsifier does relatively well for
all cuts. This argument is fully flushed out in the following section.

3.2 Zero-Sum Game

Player 1: P1 chooses a 0-extension f : V → K.
Player 2: P2 chooses a cut over K denoted by U ⊂ K
Payoff: P2 wins 1

h′(U)
for each unit of capacity crossing the cut (U,K \ U) in Gf . Thus

Payoff(P1) = −
hGf

(U)

h′(U)
, Payoff(P2) =

hGf
(U)

h′(U)

Comparing the equation for the payoff to definition 1.1, if we find strategies for P1 and
P2 such that the game value (payoffs) is bounded, then the bound will correspond to the
quality of a cut sparsifier constructed through the players’ strategies. P1 wants to choose
the 0-extension that corresponds to the best quality sparsifier Gf . Remember that a lower
value for quality is better (because it more closely bounds the cuts). P2 wants to choose
the cut that the corresponding Gf upper bounds most loosely. Note that the payoff of P2
is always greater than 1, and less than the quality of Gf for a fixed strategy f for P1. Each
player only has finite number of possible strategies since |V | and |K| are finite. We use von
Neumann’s Minimax Theorem for finite strategy space games to bound the game value.

6

Theorem 3.4. (von Neumann’s Minimax Theorem)
For every two-player zero-sum game with finite strategy sets, there exists Q ∈ R called the
game value such that Q is the best payoff or cost either player can expect to recieve from the
game. Furthermore, there exists mixed strategies µ1, µ2 for P1 and P2, such that if P1 plays
µ1, P2 cannot expect to do better than payoff Q. Likewise if P2 plays µ2, P1 cannot expect
to do better than cost Q. These mixed strategies forming a Nash equilibrium for the game.

In order to upper bound Q, we can upper bound the cost of P1’s best response to any fixed
randomized strategy µ2 for P2. µ2 is a distribution over cuts U ⊂ K. For each U ⊂ K, let
AU ⊂ V denote the cut in the full graph G such that AU ∩ K = U and hG(AU) = h′(U).
Basically, AU is a cut over G that achieves the minimum cut value for separating (U,K \U).
For a given U , there may be multiple choices for AU , but simple choose any set that achieves
the terminal cut value. We can define a function D : V × V → {0} ∪ R, which is similar to
the expected cost per unit of capacity over each edge. For any u, v ∈ V ,

D(u, v) =
∑

cuts U⊂K

µ2(U)

(
1{u,v in diff partitions of (AU ,V \AU)}

h′(U)

)
D is simply a linear combination of partition functions

DAU
=

{
1, if (u, v) crosses the partitioning (AU , V \ AU)

0, if (u, v) are in the same partition, either AU or (V \ AU)

Definition 3.5. q : X ×X → {0} ∪ R is a semimetric over X if it satisfies:

q(a, b) = 0 if a = b

q(a, b) = δ(b, a) for all a, b ∈ X
q(a, b) + δ(b, c) ≥ δ(a, c) for all a, b, c ∈ X

Furthermore, q is a metric over X if in addition q(a, b) = 0 only if a = b.

It is easy to check that DAU
is a semimetric over V , and DAU

restricted to domain K×K is
a metric over K. Therefore D is also a semimetric over V . Let D′ : K ×K → {0}R denote
the function D restricted to domain K ×K. We can also verify that D′ is a metric over K.

We are now ready to formalize our problem as the 0-extension problem. Suppose we are given
a graphG = (V,E) with capacity c : E → R, a set of terminalsK ⊂ V , and a metricD′ onK.
The goal is to find a 0-extension f : V → K that minimizes

∑
(u,v)∈E c(u, v)D′(f(u), f(v)).

Fakcharoenphol, Harrelson, Rao, and Talwar give a O(log k/ log log k) approximation algo-
rithm for this problem [FHRT03]. They relax the problem to a minimization of

∑
(u,v)∈E c(u, v)D(u, v),

where D is a semimetric over V such that D(a, b) = D′(a, b) for a, b ∈ K. Thus, using the
approximation algorithm in Fakcharoenphol, Harrelson, Rao, and Talwar [FHRT03], there
exists a 0-extension f such that∑

(u,v)∈E

c(u, v)D′(f(u), f(v)) ≤ O(log k/ log log k)
∑

(u,v)∈E

c(u, v)D(u, v)

7

We simplify expressions on both sides of the inequality:∑
(u,v)∈E

c(u, v)D′(f(u), f(v)) =
∑

(u,v)∈E

c(u, v)
∑

cuts U⊂K

µ2(U)

(
1{(f(u),f(v))∈δGf

(U)}

h′(U)

)
=

∑
cuts U⊂K

µ2(U)

h′(U)

∑
(u,v)∈E

c(u, v)1{(f(u),f(v))∈δGf
(U)}

=
∑

cuts U⊂K

µ2(U)hGf
(U)

h′(U)

= E[Payoff(P2) | P1 plays f, P2 plays µ2]

∑
(u,v)∈E

c(u, v)D(u, v) =
∑

(u,v)∈E

c(u, v)
∑

cuts U⊂K

µ2(U)

(
1{u,v∈δG(AU)}

h′(U)

)
=

∑
cuts U⊂K

µ2(U)

h′(U)

∑
(u,v)∈E

c(u, v)1{u,v∈δG(AU)}

=
∑

cuts U⊂K

µ2(U)h′(U)

h′(U)
= 1

Thus, for all µ2, there exists some f such that

E[Payoff(P2) | P1 plays f, P2 plays µ2] ≤ O(log k/ log log k)

Therefore, the game value Q < O(log k/ log log k) because for any P2 strategy µ2, P1 can
choose a f such that P2 cannot do better than O(log k/ log log k). By von Neumann’s
Minimax Theorem, there must also exist a mixed strategy µ1 for P1 such that P2 can choose a
cut U ⊂ K that ensures the expected game value is Q. Then construct the O(log k/ log log k)-
quality cut sparsifier H by taking the convex combination of Gf according to the distribution
µ1. For all a, b ∈ K,

cH(a, b) =
∑
f

µ1(f)cf (a, b)

Then by von Neumann’s Minimax Theorem,

max
cuts U⊂K

E[Payoff(P2) | P1 plays µ1, P2 plays U] = Q ≤ O(log k/ log log k)

E[Payoff(P2) | P1 plays µ1, P2 plays U] =
∑
f

µ1(f)
hGf

(U)

h′(U)

=
1

h′(U)

∑
f

µ1(f)hGf
(U)

=
hH(U)

h′(U)

8

Therefore, for all cuts U ⊂ K, hH(U)
h′(U)

≤ O(log k/ log log k), guaranteeing that H is a

O
(

log k
log log k

)
-quality vertex flow sparsifier. Von Neumann’s Minimax Theorem guarantees

the existence of H by guaranteeing the existence of µ1; however, it does not provide a
construction algorithm for µ1. Thus, we can’t use it to construct H.

4 Constructing a “Good” Flow Sparsifier [CLLM10]

One construction algorithm simple follows from a linear program representation of the prob-
lem introduced in [CLLM10]. Charikar et al give the general algorithm for flow sparsifiers,
and here by reducing the algorithm specifically for cut sparsifiers, we are able to provide
much clearer intuition for the constraints of the linear program. We want to choose a spar-
sifier represented by the edge capacities cH(a, b) for all a, b ∈ K that minimizes the quality
α. Therefore the linear program is:

min α

s.t h′(U) ≤
∑
a,b∈K

cH(a, b)1{a,b in opp partitions (U,K\U)}, ∀ U ⊂ K∑
(a,b)∈K

cH(a, b)1{a,b in opp partitions (U,K\U)} ≤ αh′(U), ∀ U ⊂ K

cH(a, b) ≥ 0, ∀ a, b ∈ K

The first type of constraints ensures that H is a cut sparsifier (h′(U) ≤ hH(U)). The second
type of constraints ensures that H is an α-quality cut sparsifier(hH(U) ≤ αh′(U)). Note
that there an exponential in k number of constraints. We know from the proof of existence
that the polytope defined by these constraints is nonempty for some α = O(log / log log k).
By Theorem 2.3, we can reduce the second type of constraints to solving the minimum con-
gestion routing problem for the hardest flow d̃. However, the first type of constraints (to
ensure H is a cut sparsifier) is difficult to check in polynomial time since cH(a, b) may not
have any structure.

Notice that there may exist a better sparsifier that does not use a convex combination of
0-extensions; however, since we only are looking for a O(log / log log k)-quality cut sparsifier,
we can restrict ourselves to finding a graph H that is a convex combination of 0-extensions f .
This would then enforce that H is a cut sparsifier by Lemma 3.3. However, it would require
an exponential number of variables, since there are an exponential number of 0-extensions.

Charikar et. al. suggests relaxing the linear program using a “lifting operation” with “Earth
mover constraints” [CLLM10]. However, we observe here, that for the specific case of cut
sparsifiers, this reformulation and relaxation of the linear program corresponds to defining
variables over the edges and vertices representing the probability that a vertex u ∈ V is
mapped to a vertex a ∈ K, and the probability an edge (u, v) ∈ E is mapped to an edge

9

(a, b) ∈ EH . Given a distribution µ over 0-extensions, for all a, b ∈ K, and u, v ∈ V , let

xu,va,b = P(f(u) = a, f(v) = (b)) =
∑
f

µ(f)1{f(u)=a,f(v)=b}

xua = P(f(u) = a) =
∑
f

µ(f)1{f(u)=a}

Therefore, it is clear to see that for all a, b ∈ K and u, v ∈ V ,

xu,va,b = xv,ub,a ,
∑
b∈K

xu,va,b = xua, xu,va,b ≥ 0,
∑
a∈K

xua = 1, xaa = 1

Furthermore,

cH(a, b) =
∑
f

µ(f)cf (a, b) =
∑
f

µ(f)
∑

(u,v)∈E

c(u, v)1{f(u)=a,f(v)=b} =
∑

(u,v)∈E

c(u, v)xu,va,b

Therefore, instead of using an exponential number of variables to describe the distribution
over f , we use variables xu,va,b and xua with the constraints above. Thus, it is a relaxation
because it may allow graphs H that are not actually convex combinations of 0-extensions.
However, Charikar et. al. showed that those constraints above are enough to guarantee
that H is a cut sparsifier, therefore we can simply check each of those polynomially many
constraints to verify H is a cut sparsifier. Thus we have:

min α

s.t xu,va,b = xv,ub,a ,
∑
b∈K

xu,va,b = xua, xu,va,b ≥ 0, ∀ a, b ∈ K, u, v ∈ V∑
a∈K

xua = 1, xaa = 1, ∀ a ∈ K, u ∈ V

cH(a, b) =
∑

(u,v)∈E

c(u, v)xu,va,b , ∀ a, b ∈ K

congH(d̃) ≤ α, for d̃ ∈ R(k
2) s.t. d̃a,b = cH(a, b)

Therefore, we have reduced and relaxed the linear program to a program with poly-
nomial number of constraints, where each constraint can be verified in polynomial time.
Furthermore, the existential proof in section 3 showed that there exists a feasible solution
for α = O(log / log log k). Thus solution to this linear program will give a O(log / log log k)-
quality cut sparsifier, matching the bound from the existential proof.

5 Conclusion

In this paper, we have presented the vertex sparsification problem. We have provided a clear
proof and intuition for the existence of O(log k/ log log k)-quality cut sparsfiers [Moi09]. Then

10

we presented the construction algorithm for finding a O(log k/ log log k)-quality cut sparsfier
in polynomial time [CLLM10].

In addition, we have introduced flow sparsifiers and showed why they are strictly general-
izations of cut sparsifiers. There has been much work extending each of the existence and
construction results for cut sparsifiers to flow sparsifiers [LM10] [CLLM10]. In fact the exact
bounds of O(log k/ log log k) for both the existence and construction arguments extend from
cut to flow sparsifiers. The proofs follow the same structure except instead of using cuts,
they use more general metrics over V and K. The Moitra style constructions may return
dense sparsifiers H that may not be convex combinations over 0-extensions. Englert et. al.
presented a different style construction algorithm that constructs flow sparsifiers with “sim-
pler” structure, specficially sparsifiers H that are a convex combination of trees, obtaining
the same approximation quality of O(log / log log k).

In addition to the existence and construction arguments, there are proven lower bounds of
Ω(log1/4 k) for cut sparsifiers [CLLM10] and Ω(log log k) for flow sparsifiers [LM10]. This
proves that there may not exist a constant approximation vertex sparsifier for a given graph
G and terminal set K.

References

[BK96] András A. Benczúr and David R. Karger. Approximating s-t Minimum Cuts in Õ(n2)
Time. In STOC, pages 47–55, 1996.

[CLLM10] Moses Charikar, Tom Leighton, Shi Li, and Ankur Moitra. Vertex sparsifiers and ab-
stract rounding algorithms. CoRR, abs/1006.4536, 2010.

[FHRT03] Jittat Fakcharoenphol, Chris Harrelson, Satish Rao, and Kunal Talwar. An improved
approximation algorithm for the 0-extension problem. In SODA, pages 257–265, 2003.

[LM10] Frank Thomson Leighton and Ankur Moitra. Extensions and limits to vertex sparsifi-
cation. In STOC, pages 47–56, 2010.

[Moi09] Ankur Moitra. Approximation Algorithms for Multicommodity-Type Problems with
Guarantees Independent of the Graph Size. In FOCS, pages 3–12, 2009.

[ST11] Daniel A. Spielman and Shang-Hua Teng. Spectral Sparsification of Graphs. SIAM J.
Comput., 40(4):981–1025, 2011.

11

