
Fast Long Lived Renaming

Justin Kopinsky
Massachusetts Institute of Technology

jkopin@mit.edu

ABSTRACT
We present a randomized algorithm to solve the renam-
ing problem in distributed computing with step complexity
O(log logn) per operation against an oblivious adversary.
This holds with high probability for any particular opera-
tion, which is an improvement over existing O(logn) algo-
rithms. This result also demonstrates a doubly exponen-
tial separation against deterministic algorithms and an ex-
ponential separation against strong adversarial algorithms,
for which lower bounds of Ω(n) and Ω(logn) respectively are
known. We show that our results can be extended to support
repeatedly releasing and reacquiring names (‘long-lived’ re-
naming), with complexity bounds holding over any sequence
of polynomially many executions. We further sketch the
same result for infinite executions.

1. INTRODUCTION
The availability of unique identifiers, or ‘names’, for proces-
sors in a distributed setting is an important requirement for
many algorithms. For example, if one wishes to assign a
block of memory to each node, it is desirable to simply allo-
cate a continuous chunk and allow each node to index into
it by name. Unfortunately, while most systems do provide
such names, they are often drawn from impractically large
namespaces.

This gives rise to the ‘renaming’ problem, that of assign-
ing unique names in a small namespace to processors drawn
from a large or unknown namespace. One may consider
tight renaming, in which the size of the namespace is ex-
actly equal to the number of participating processors, n.
In contrast, loose renaming relaxes this constraint to allow
O(n) names. A substantial amount of research has already
studied renaming complexity in both randomized and deter-
ministic settings, e.g. [5].

Tight renaming is known to be impossible on an asynchronous
read/write system in the presence of crash faults[5], and

has deterministic step complexity∗ Θ(n) per processor even
when allowed atomic operations (e.g. test-and-set or compare-
and-swap) and no faults are tolerated[3]. The Θ(n) lower
bound also holds for loose renaming with fault tolerance.

It is easy to construct an algorithm to show that these
bounds are tight: simply have every processor attempt to
atomically† acquire each name in turn, stopping when suc-
cessful. Obviously, the slowest processor will need to try
every name before acquiring one, taking Θ(n) steps.

Fortunately, randomized algorithms are known to perform
better[4, 2]. Relatively simple algorithms can be imple-
mented to solve loose renaming in O(logn) steps with high
probability (see section 3). Generally, processors can se-
lect a name at random and attempt to acquire it. With
some care, these strategies have been successfully adopted
to achieve poly-logarithmic time bounds[2], even for a tight
namespace.

Most renaming algorithms have been developed under the
assumption that processors only attempt to acquire a single
name, and retain that name for the lifetime of the task for
which the name was acquired. We refer to this problem as
‘one-shot’ renaming. However, one might also be interested
in allowing a processor to relinquish its name so that a later
processor can attain it. This is the idea of ‘long lived’ re-
naming[6]. Note that when discussing time bounds for long
lived renaming algorithms, we define n to be the maximum
number of processors which are ever participating simulta-
neously.

In this paper, we discuss and analyze a loose, randomized,
one shot renaming algorithm given by [1] which completes
in O(log log n) steps with high probability. Note that this
is an improvement over the previously best known O(logn)
algorithms. We then extend the algorithm to long lived
renaming and provide a novel analysis establishing that the
O(log logn) time bound holds even for infinite executions,
despite the fact that rare events may cause the algorithm to
temporarily enter an unfavorable state.

The remainder of this paper is laid out as follows: Section 2

∗In this paper, we refer to step complexity as the number
of steps taken by the slowest processor. This is sometimes
known as local complexity.
†Note that this is not legal on a read/write system and does
not violate the aforementioned impossibility result.

describes the model in detail and gives a formal problem
statement. Section 3 provides somewhat more detail about
known results in the specific setting we consider. Section 4
describes the algorithm of [1] and provides the analysis for
the one shot renaming problem. Section 5 gives our novel
analysis for the long lived renaming problem. Finally, we
give some possible improvements and directions for future
work in section 6.

2. BACKGROUND
2.1 Concepts in Distributed Computing
We provide a basic overview of the distributed computing
model which we use as the framework for our algorithm.
Knowledge of sequential algorithmic techniques is assumed.

2.1.1 Asynchronous Shared Memory Model
We assume that n processors operate independently on a
shared memory space. In particular, a given memory ad-
dress refers to the same location regardless of which proces-
sor accesses it, although processors are allowed to maintain
local state as well.

The processors operate asynchronously in the sense that its
execution can be modelled by any valid sequential schedule.
A sequential schedule associates with each time step a single
processor which is then allowed to perform a single opera-
tion. Note that the same processor may be chosen by the
schedule many times in a row, or not at all for a period of
time. Formally, a schedule is any element of the set of all
strings over the alphabet of processor names.

Note that, schedules allow us to ignore the issue of concur-
rent accesses to the same location in memory. If the next
operation for two separate processors each access the same
memory location, one of them will be scheduled before the
other, resolving the conflict. Bear in mind that there is no
guarantee which will be scheduled first.

It is important to note that the output of an algorithm may
depend on the schedule. For example, consider the following
algorithm on two processors: processor A writes x = 0, and
then outputs x. Processor B writes x = 1 and then outputs
x. If we write the schedule as a string of processor names
indicating which processor acts, then for schedule AABB,
A will output 0 and B will output 1. However, for schedule
ABAB both processors will output 1.

In the setting of renaming, one would expect that the name
emitted by a given processor depends on the schedule for a
given execution of the renaming algorithm, even for deter-
ministic algorithms (or randomized algorithms with a fixed
seed). Naturally, this is indeed the case, but the algorithm
can still be considered correct, as described in section 2.3.

2.1.2 Compare-and-Swap
As mentioned briefly in section 1, our primary technique
for solving renaming will require processors to pick a name,
check if that name has already been acquired by someone
else, and if not, acquire it. Unfortunately, this is impos-
sible to do with only reads and writes. To illustrate this,
consider two processors, A and B, who both randomly se-

lect the same, currently vacant name, say name i. Each
executes the pseudocode given in figure 1.

...

x = read(i)

if (!x) { write(i,1); return i }

...

Figure 1: An incorrect algorithm

Then, under the schedule ABAB, both processors will read
i = 0, and both processors will execute the conditional code,
causing both to choose name i. This algorithm is incorrect,
since it is illegal for multiple processors to be assigned the
same name. A full impossibility proof is out of scope of this
paper, but this problem is very well studied, see e.g. [8].

There are many mechanisms which solve this problem by
allowing slightly more power than just reads and writes.
In this paper, we will assume processors have access to a
hardware implementation of the CompareAndSwap instruc-
tion. In this paper, we will typically abbreviate invocations
of CompareAndSwap to CAS. CAS takes three arguments: a
memory address, a, an expected value, e, and an update
value, v. CAS implements the pseudocode given in figure 2.

CAS(a,e,v):

if(read(a)=e)

write(a,v)

return true

else

return false

Figure 2: The CompareAndSwap operation

The crucial point of the CAS operation is that it executes
atomically. In the language of schedules, this means that
one must think of CAS as a single operation; i.e. no other
processor may act while some processor is in the middle of
performing a CAS. Using the CAS instruction, we can fix the
pseudocode shown in figure 1 as demonstrated in figure 3.
Note that it is standard practice to read the location in
question before attempting a CAS, as a read is significantly
less expensive than a CAS.

...

x = read(i)

if (!x)

test = CAS(i,0,1);

if (test)

return i

...

Figure 3: A correct algorithm using CompareAndSwap

Now, supposing processors A and B try to simultaneously
execute the code of figure 3, at most one of them will see a
value of true returned by the call to CAS, and so at most
one of them will output name i. Again, see e.g. [8] for a
fuller discussion of CAS and other methods of circumventing
the weakness of read/write systems.

2.1.3 Adversarial Schedules
When analyzing algorithms for distributed systems, one must
take care to consider the schedule being executed. In par-
ticular, different schedules might result in different running
times, even for deterministic algorithms. Bearing this in
mind, we must assume that the schedule is determined by
an adversary when conducting our analysis. The adversary
is assumed to have full knowledge about our algorithm when
creating the schedule.

For deterministic algorithms, any fixed schedule results in
an execution with a fixed runtime, so we must analyze algo-
rithms assuming that the adversary chooses the worst pos-
sible schedule, similarly to sequential algorithms for which
the worst case input is often considered.

However, for randomized algorithms, there are varying levels
of power which can be given to the adversary. The strongest
adversary knows the entire random string used by our algo-
rithm in advance, and can determine the schedule based on
that information. The astute reader will notice that this ad-
versary is not particularly interesting, as we might as well
choose the random string, r which runs the fastest against
its corresponding adversarial schedule, and simply use the
deterministic algorithm which simulates the original algo-
rithm on r. In particular, any lower bounds which hold
for deterministic algorithms also hold for randomized algo-
rithms against this super-powered adversary.

The strongest adversary which is still interesting (often re-
ferred to as simply the strong adversary) does not define a
schedule in advance. Rather, at each time step, he picks the
next processor to act. He sees the results of all coin flips
made at that time step before determining the next time
step. Renaming against this adversary is tractable, but as
discussed in section 3, the best known algorithm have step
complexity Θ(logn), even for loose renaming.

In this paper, we consider a weaker adversary, often referred
to as the oblivious adversary. Much like deterministic adver-
saries, oblivious adversaries must fix a schedule in advance,
and are given no information about the random string used
by the processors. No non-trivial lower bounds are known for
renaming against the oblivious adversary. An upper bound
of O(log log n) will be established in section 4.2.

2.2 Probability
This section presents two important bounds we will use in
our analysis. We do not prove them.

The union bound states that, if each of k independent events
occurs with probability at least 1−p, then all k events occur
with probability at least 1 − kp. Even if the events are not
independent, so long as each event occurs with probability
1− p given any result for the other k − 1 events, the bound
still holds.

The Chernoff bound has many forms. The form we will
use is the following: given k independent events which each
occur with probability at most p, let X be the number of
events which succeed. Then, for c ≥ 1,

Pr[|X − kp| ≥ ckp] ≤ exp(−Ω(ckp)) (1)

Similarly to the union bound, this bound will also hold for
dependent events, provided every event occurs with proba-
bility at most p given any result for the other k − 1 events.

2.3 Problem Statement
Formally, the one shot renaming problem asserts that each
processor makes at most one call to a Get operation. The Get
operation must terminate in finitely many steps, returning
a member of some fixed namespace. Furthermore, no two
Get operations called by different processors should return
the same name. We assume all processors know the total
number of participating processors, n.

As described previously, the size of the namespace should be
exactly n for tight renaming. The algorithms we present in
this paper solve loose renaming, and thus only require that
the size of the namespace be O(n).

We extend the problem to long lived renaming by support-
ing a new operation: Free. Processors are allowed to call
Get multiple times, but only if a call to Free is made before
each successive Get call. Furthermore, two Get operations,
say called by processors A and B are allowed to return the
same name, provided (without loss of generality) that af-
ter calling Get, processor A initiates a call to Free before
processor B’s call to Get terminates‡. In the case of long
lived renaming, we assume that n represents the maximum
number of simultaneous processors which are either busy
preforming a Get or Free operation, or whose last operation
was a Get operation.

When referring to the complexity of an operation, we con-
sider the number of steps performed by the processor exe-
cuting that operation. Even if a processor is left idle for a
long time by the scheduler, that time does not count against
its runtime. In this paper, we assume that CAS operations
have unit cost.

The results presented in this paper will hold with high prob-
ability. Whenever this term is used, it is assumed to mean
that the event of concern occurs with probability at least
1− 1/nc, for some c ≥ 1.

3. RELATED WORK
Renaming originally appeared in [5], in which an asynchronous,
O(n) step algorithm was presented. Shavit and Herlihy
showed a 2n − 2 lower bound on the minimum size of the
namespace for deterministic renaming to be possible when
only reads and writes are allowed[7]. Note that introducing
the compare-and-swap operation avoids this lower bound.

Some work has considered adaptive renaming, for which the
value of n is not known to the processors, but the size of the
namespace must nevertheless depend on the current value
of n. A global lower bound of Ω(n log(n/c)) total steps by
all processors was given for adaptive randomized renaming

‡This restriction is a special case of linearizability, see e.g. [8]
for more details.

into cn names against a strong adversary in [3]. This implies
operations with (local) step complexity Ω(logn) for names-
paces of size O(n) against a strong adversary. The global
bound is tight, as demonstrated by an algorithm given in [2].

It is straightforward and instructive to construct an O(logn)
step algorithm for non-adaptive loose renaming, even against
a strong adversary. In particular, construct an array of size
cn. At each step, a processor picks a name at random from
the array and attempts to obtain it via a compare-and-swap.
The attempt succeeds with probability at least 1− 1/c, and
so the number of attempts is given by a geometric random
variable with parameter 1 − 1/c. It is well known that the
maximum of n geometric variables with a constant param-
eter p is O(logn) with high probability (in particular, pn
processors succeed in one step, and in general (1 − p)i−1pn
processors succeed in i steps).

This algorithm also works for long lived renaming against
even a strong adversary, and previously O(logn) (with high
probability) was the best known upper bound in this setting,
for both strong and oblivious adversaries. This is improved
on in [1] with a O(log logn) step complexity algorithm for
loose renaming.

4. ALGORITHM
In this section, we present a data structure to solve the re-
naming problem without supporting Free, renaming n pro-
cessors using O(n) names. We call this algorithm the Lev-

elNaming algorithm. Section 4.1 describes the layout and
operations of the structure. We will show in section 4.2 that
these operations succeed after at most O(log log n) compare-
and-swap operations.

4.1 Description
Allocate a shared memory array of size 4n§, initialized to
0. We will divide this array into O(logn) levels, L0, L1, . . .
so that L0 consists of the first 2n entries of A, L1 consists
of the next n entries, and in general, Li consists of 2n/2i

entries. We will denote |Li| to be the size of Li, in particular
|Li| = 2n/2i by construction.

We implement Get as follows: for each level Li in succession,
randomly pick an index l ∈ Li and execute CAS(A[l], 0, 1).
If successful, then stop and return l. Otherwise, repeat this
process c times, where c = O(1) is a parameter of the data
structure. If all c attempts fail, continue to Li+1. If every
level has been traversed without success, then try every in-
dex of A in succession (though we will show that this will
essentially never happen).

4.2 Analysis
Define Si to be the number of processors which are currently
assigned a name in Li. We will prove by induction that when

the execution is finished, Si ≤ n/22i

with high probability

for all i ≥ 1. Note that this implies that Si ≤ n/22i

at any
point during the execution, since once a processor receives
a name, it does not lose it. It follows immediately that no
processor reaches level 1+log logn, and that therefore every

§One can acheive constants better than 4, but we use 4 here
for simplicity of analysis.

processor terminates in O(log log n) steps. Because of this
fact, we will generally assume i ≤ log logn throughout this
section.

The base case, i = 1, is simple. |L0| = 2n, so it is impos-
sible for L0 to be more than half full at any point during
the execution. Therefore, the probability that a processor
advances to L1 is at most 1/2c ≤ 1/8, provided we choose
c ≥ 3. Since this bound holds for any particular processor
regardless of the state of the other processors, we can apply
the Chernoff bound to show that the probability that more
than n/4 = 2 · (n/8) processors advance to L1 is at most

e−Ω(n), as desired.

To prove the induction step, we introduce the following
lemma, which will prove useful throughout our analyses.

Lemma 4.1. Suppose Si−1 ≤ δn/22i−1

at all times for
some δ = O(1). Then for appropriate choice of c, the prob-
ability that a processor is assigned a name in Li is at most

1/22i+2

.

The probability that a processor is assigned a name in Li
is obviously upper bounded by the probability that the pro-
cessor fails to find a name in Li−1 given that it gets to Li−1

in the first place.

The proof now follows directly from the asymptotics of Si−1

and |Li−1|. In particular, the probability that a single ran-
domly selected name is already taken is given by

Si−1

|Li−1|
≤ δn/22i−1

2n/2i−1
=
δ2i−2

22i−1

However, for any choice of r, it holds that i = o(1
r
2i), and

therefore that 2i−2 = o(22i−1/r) = o(22i−1

)1/r. Taking r =

2, we have δ2i−2 = o(
√

22i−1). Now, choosing c = 16, we
can compute:

Pr[p collides c time] ≤
(
δ2i−2

22i−1

)c
≤

(√
1

22i−1

)16

=
1

22i+2

This holds for all sufficiently large i. Since it fails to hold for
only a finite number of i (independent of n), we can choose
c = O(1), c ≥ 16 so that the bound holds for all i.

Remark: We can replace the value 1/22i+2

with 1/22i+k

for any constant k by choosing c = 4 ∗ 2k. We will refer to
this fact as the strong version of lemma 4.1.

To complete the proof of the main result, we will prove the
following lemma:

Lemma 4.2. Suppose every processor has been assigned a

name in Li with probability at most 1/22i+2

, then, with high

probability, Si ≤ n/22i

.

Assume lemma 4.2 is true. By the inductive hypothesis,

Sj ≤ n/22j

for every j < i. Then the precondition of
Lemma 4.1 is satisfied for Si−1, and so every processor is as-

signed a name in Li with probability at most 1/22i+2

. This
satisfies the precondition of lemma 4.2, which completes the
result.

We hereby prove lemma 4.2. We will apply a Chernoff bound

to compute the probability that Si ≥ n/22i

. Each processor

reaches Li with probability at most 1/22i+2

by assumption.

Thus, Si ≤ n/22i+2

in expectation. Define

µ =
n

22i+2 =
n

24·2i

This allows us to use the Chernoff bound (equation (1)) to
compute:

Pr
[
Si ≥

n

22i

]
≤ Pr

[
|Si − µ| ≥

n

22i − µ
]

= Pr
[
|Si+1 − µ| ≥ µ

(
23·2i

− 1
)]

≤ Pr
[
|Si+1 − µ| ≥ 22i+1

µ
]

≤ exp
(
−Ω

(
22i+1

µ
))

= exp
(
−Ω

(n

22i+1

))
Note that

log logn− 1 = log logn− log 2 = log
1

2
logn = log log

√
n

Now, for i ≤ log logn−2, we have n/22i+1

= Ω(
√
n), and so

the bound on Si+1 holds with probability 1− exp(Ω(
√
n)).

One might observe that if even a single Si fails to achieve the
given bound, then our arguments may not hold for all subse-
quent Sj , j > i either. Fortunately, because the probability
of failure is exponentially small, we can directly apply the

union bound to show that every Si ≤ 22i

with probability
at least 1−exp(nΩ(1)). Thus, the inductive step holds for all
i = 1 . . . log log n− 2, proving the claim for i ≤ log log n− 1.

We consider Slog logn separately. Note that we could not
hope to prove Slog logn ≤ 1 using a Chernoff bound, since
only a constant number of processors will reach Llog logn in
expectation. Fortunately, we have already shown that

Slog logn−1 ≤
n

22log log n−1
=
√
n

Fix i = log logn. Lemma 4.1 still applies to Li−1 by the
inductive result. In particular, the probability that a par-
ticular processor fails to find a name in Li−1 is at most

1/22i+2

≤ 1/n4. As mentioned, we have Si−1 ≤
√
n. By the

union bound, the probability that even one out of
√
n trials

fails, where each succeeds with probability at least 1−1/n4,
is at most 1/n3, so Si ≤ 1 with high probability. Obvi-
ously, once a processor is the only processor at a level, its
CAS attempts cannot fail, so Sj = 0 w.h.p. for j > log logn,
concluding the proof.

5. LONG LIVED EXECUTIONS
In this section, we consider introducing Free to the data
structure described above, so that processors can relinquish
ownership of a name, and subsequent calls to Get can again
return that name. This procedure is analogous to a hash
table which supports deletes along with inserts.

The implementation of Free is natural: when a processor
which owns name l calls Free, simply set A[l] = 0. However,
it is not clear that a particularly bad sequence of calls to Get

and Free will not cause the data structure to enter a bad
state for which the analysis of section 4.2 does not hold.
Section 5.1 resolves this concern for executions over at most
polynomially many operations (in n) by showing that the
data structure never enters a ‘bad’ state (to be defined later)
with high probability.

Unfortunately, over executions lasting arbitrarily long, high
probability results are not enough to guarantee that the
structure never enters a bad state. In section 5.2 we present
sketch a proof which shows that even if the execution enters
a bad state, it returns to a ‘good’ state (i.e. one in which
the analysis of section 4.2 does hold) within polynomially
many more operations.

Observe that this result guarantees that a priori any par-
ticular operation succeeds in O(log log n) compare-and-swap
operations. Without such a result, it is conceivable that once
a bad state is reached, the structure spirals out of control,
never to return to a good state. In such a scenario, an op-
eration appearing very late in the execution (late enough
that a bad state has been inevitably reached, since this hap-
pens with non-zero probability) would be unlikely to succeed
quickly in any execution.

5.1 Polynomial Executions
We will again proceed by induction. In particular, we will
induct over successful CAS attempts. We claim that each

successful CAS occurs in Li with probability at most 1/22i+2

for every i ≥ 1. Note that this result directly implies that
each Get operation reaches Llog logn with probability 1/n4,
and so every operation succeeds in log logn steps with high
probability.

Clearly, the first CAS succeeds in L0 with probability 1, sat-
isfying the claim. Now, consider a particular CAS, say exe-
cuted by processor A, and suppose every previous successful
CAS satisfies the claim. Because the adversary must fix the
schedule in advance, the probability that a given processor’s
name is in Li at any timestep is the same as the proba-
bility that that processor’s name was in Li at the moment
it completed its Get operation. Note that this is not the
case against a strong adversary, as such an adversary could
choose to leave a processor in, for example, L2 forever once
it lands there.

In particular, this observation allows us to invoke the induc-
tive hypothesis to show that the probability that any given
processor is in Li at any point during processorA’s execution

of Get is at most 1/22i+2

. Then, whenever A makes a CAS

attempt in any level (say Li), the precondition of lemma 4.2

is satisfied for every i, and so Si ≤ 22i

. Therefore, the pre-

condition of lemma 4.1 is satisfied, and so A is assigned a

name in Li with probability at most 1/22i+2

, completing the
proof.

Remark: Notice that in the proof of lemma 4.2, we showed

Si ≤ 22i

with probability at least 1 − e−Ω(
√
n) for every

i < log logn, but only probability at least 1 − 1/n for i =
log logn. We can improve this probability using the strong
version of lemma 4.1 so that any given processor fails to

find a name in Llog logn−1 with probability 1/22log log n+k

=

1/n2k

. Then, taking the union bound over the O(
√
n) pro-

cessors which have made it to Llog logn−1, the probability

that no collisions occur in Llog logn−1 is at least 1−1/n2k−1.

In particular, for any fixed polynomial O(nr) we choose, we
can pick c so that lemma 4.2 holds with probability at least
1 − 1/nr. This improved result allows us to take a union
bound over an entire polynomial length execution to show
that, with high probability, no Get operation takes more
than log logn steps.

5.2 Infinite Executions (sketch)
Given an infinite execution, eventually, any state which can
be reached with any non-zero probability will eventually be
acheived. However, we claim that, starting from any ini-
tial assignment of names to processors, after polynomially
many further operations using the LevelNaming algorithm,

the bounds Sj ≤ 3n/22j

will hold with high probability. We
first present the following lemma:

Lemma 5.1. Consider the LevelNaming algorithm and any
initial assignment of names to processors. Consider the fol-
lowing sequence of operations: select a processor uniformly
at random from those which have been assigned a name.
That processor calls Free and then Get sequentially (i.e. no
other processors perform operations during this time). Af-
ter repeating this procedure polynomially many times, the

bounds Sj ≤ 3n/22i

will hold with high probability.

One can argue that the oblivious adversary cannot do any
better than choosing processors at random to Free, and
therefore lemma 5.1 implies that the LevelNaming algorithm
succeeds in O(log log n) steps with high probability for ev-
ery operation in an infinite execution. Although we will not
prove the above remark in full detail, we will provide a com-
plete proof of lemma 5.1.

Remark: Even the oblivious adversary can break the Lev-

elNaming algorithm from some initial states if the adversary
knows the initial condition. For example, suppose initially
Li is completely full for every i ≥ 4. These levels have to-
tal size n/2, leaving n/2 processors in L0, L1, L2, L3. If the
adversary only allows processors from this latter set of n/2
processors to act, then with (small) constant probability,
Get operations will reach L4, and be forced to traverse all
logn levels, eventually ‘falling off’ and traversing the names-
pace linearly (as described in section 4.1). Fortunately, in
an actual execution, the oblivious adversary can not iden-
tify which processors are in which level with any significant
accuracy, invalidating this approach.

To prove the lemma, define Si as described in section 4.2

and write αi = bn/22i

c. Recall that we gave αi as an upper
bound on Si in previous sections, and our analysis of sec-
tion 5.1 will hold as long as Si ≤ δαi holds for every i and
some constant δ (see lemma 4.1). We then define a potential

function Φ =
∑logn
i=1 Φi with:

Φi =

0 : Si < 2αi∑αi
j=Sj−2αi

1
2j : 2αi ≤ Si ≤ 3αi∑αi

j=0
1
2j + Si − 3αi : Si > 3αi

An easy way to think about this function is as follows, each
of the first 2αi processors with a name in Li contribute
0 to Φi. Then, each of the next αi processors contribute
1/2αi , 1/2αi−1, . . . , 1/2 to Φi respectively. All further pro-
cessors contribute exactly 1 to Φi.

We make two important observations about Φ. First, Φ ≤ n,
since, as described above, no processor ever contributes more
than 1 to any Φi. Secondly, Φ = 0 whenever Si ≤ 2αi for
every i, and if, for any j, Sj ≥ 3αi + 1, then Φ > 1. We
will show that if there exists an i with Si > 3αi, then after
randomly selecting a processor and allowing that processor
to call Free and then Get, E[∆Φ] ≤ −1/3n. Thus after at
most nΦ ≤ O(n2) steps in expectation, no i with Si > 3αi
can exist (otherwise Φ < 1 would hold, a contradiction).
Applying a standard weighted random walk argument gives
the same result with high probability after O(n3) steps.

We now compute E[∆Φ]. By linearity of expectation, E[∆Φ] =∑
E[∆Φi]. Let i0 be the smallest value of i such that Si ≥

3αi. i0 exists by assumption (otherwise there is nothing to
prove) and i0 ≤ logn holds, since there are only logn levels.
First, after the Free,

E[∆Φi0] ≤ −Si0/n ≤ −3αi/n = −3/22i

We can apply lemma 4.1 to all i ≤ i0, so the probability that
the Get operation reaches level Li0 or higher from Li0−1 is at

most 1/22i0+2

≤ 1/22i0
. Furthermore, regardless of which

level Li0 , Li0+1, . . . the name returned by Get falls into, Φ
increases by at most 1. Thus,

logn∑
i=i0

E[∆Φi] ≤ −3/22i0
+ 1/22i0 ≤ −2/22i0 ≤ −1/n (2)

Note that this last inequality assumes i0 ≤ log logn. If

this is not the case, then Si ≤ 2n/22i

for all i ≤ log log n,
so no processor reaches level Li0 with high probability (in
particular with probability 1− 1/nr for some large constant
r), by the analysis of section 5.1. However, Li0 cannot be
empty by construction of i0, so there is still a probability
at least 1/n of selecting a processor from Li0 (or higher) to
Free (thereby decreasing Φ by 1), so E[∆Φi] ≤ −1/n still
holds.

For i < i0, Si < 3n/22i

holds by construction of i0. We
consider three cases. If Si < 2αi − 1, then E[∆Φi] = 0,

since neither adding or removing a processor from level Li
changes Φi at all.

Suppose 2αi − 1 < Si < 3αi. Write k = Si − 2αi. The
probability of removing a processor from Li via the Free

is Si/n ≥ 2/22i

, which would decrease Φi by 1/2k. By
lemma 4.1, the probability of Get returning a name in Li is

at most 1/22i

, which would increase Φi by 1/2k−1. Thus:

E[∆Φi] ≤
2

22i

(
− 1

2k

)
+

1

22i

(
1

2k−1

)
= 0

Finally, if Si = 2α − 1, then removing a processor from
Li does not change Φi at all, but adding one increases Φi
by 1/2αi . Lemma 4.1 still applies, so the new processor is

assigned a name in Li with probability at most 1/22i

. In
this case,

E[∆Φi] ≤
1

22i

1

2n/22i
=

1

22i+n/22i

One can easily verify that, for discrete i, this value is maxi-
mized when i = log logn, in which case ∆Φlog logn ≤ 1/2n.
For i ≥ log log n + 1, the 2i term dominates, and ∆Φi ≤
1/n2. For i ≤ log logn − 1, the n/22i

term dominates, and

∆Φi ≤ 1/2
√
n. Recalling that i0 ≤ logn since there are only

logn levels, we get:

i0−1∑
i=1

E[∆Φi] ≤
log logn

2
√
n

+
1

2n
+

logn

n2
=

1

2n
+ o

(
1

n

)
(3)

Combining equations (2) and (3) gives

logn∑
i=1

E[∆Φi] =

i0−1∑
i=1

E[∆Φi] +

logn∑
i=i0

E[∆Φi]

≤ − 1

n
+

1

2n
+ o

(
1

n

)
≤ − 1

3n

as desired, completing the proof.

6. CONCLUSIONS
We have described an algorithm for randomized loose, long
lived renaming against an oblivious adversary for which ev-
ery operation succeeds in at most O(log logn) steps with
high probability. This result holds even for infinite execu-
tions and demonstrates a separation from algorithms against
a strong adversary, for which Ω(logn) lower bounds hold.

6.1 Possible Improvements
With some care, it should be possible to acheive the result
of lemma 4.1 for a namespace of size (1 + ε)n for any ε > 0

(although the value of c required will grow with 1/ε). With
lemma 4.1 holding, the rest of the analysis of sections 4.2
and 5 will follow as well. This result would provide a scheme
describing a O(f(1/ε) log logn) algorithm for renaming into
any namespace which is arbitrarily close to tight.

If one is satisfied with amortized complexity, it should also
be possible to completely reassign names every so often (ap-
proximately once per polynomially many operations) to ef-
fectively guarantee that ‘bad’ states do not persist for long,
even without relying on the results of section 5. This may
perform better in practice, and would likely provideO(log log n)
amortized bounds even against a strong adversary.

Finally, it is worth noting that our algorithm can be utilized
as a hash table. One requires c logn independent hash func-
tions (although practically only c log log n are necessary).
Inserts and searches try each hash in turn analogously to
the LevelRenaming algorithm until an empty slot (for in-
serts) or the desired key (for searches) is found. Assuming
the hash functions (or alternatively, the keys) are chosen at
random, our O(log logn) bound should hold even for infi-
nite executions against an adversary who must choose the
sequence of operations in advance.

6.2 Future Work
There is still a complexity gap between the O(log logn) up-
per bound for loose renaming given in this paper, and the
trivial Ω(1) lower bound. We hope future research may re-
solve this question, either with a faster algorithm, or con-
trarily with an improved lower bound.

7. ACKNOWLEDGMENTS
This work was conducted jointly with Dan Alistarh, and
the author gratefully acknowledges his contribution to these
results and his helpful feedback on this paper. The author
would also like to thank Nir Shavit for his supervision and
insight throughout this research.

8. REFERENCES
[1] Dan Alistarh. The level renaming algorithm. Personal

communication, 2012.

[2] Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth
Gilbert, and Morteza Zadimoghaddam. Optimal-time
adaptive strong renaming, with applications to
counting. In PODC, pages 239–248, 2011.

[3] Dan Alistarh, James Aspnes, Seth Gilbert, and Rachid
Guerraoui. The complexity of renaming. In FOCS,
pages 718–727, 2011.

[4] Dan Alistarh, Seth Gilbert, Rachid Guerraoui, and
Corentin Travers. Brief announcement: New bounds for
partially synchronous set agreement. In DISC, pages
404–405, 2010.

[5] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David
Peleg, and Rüdiger Reischuk. Renaming in an
asynchronous environment. J. ACM, 37(3):524–548,
July 1990.

[6] Alex Brodsky, Faith Ellen, and Philipp Woelfel.
Fully-adaptive algorithms for long-lived renaming. In
DISC, pages 413–427, 2006.

[7] Maurice Herlihy and Nir Shavit. The topological
structure of asynchronous computability. JOURNAL

OF THE ACM, 46:858–923, 1996.

[8] Maurice Herlihy and Nir Shavit. The Art of
Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.

