SSSP, SORTING, AND PRIORITY QUEUES ON THE WORD RAM

A survey of the connection between SSSP, sorting, and
priority queues on the word RAM

Abstract

We survey and discuss the connection between three of the most fundamental problems in
theoretical computer science: sorting, priority queues, and shortest paths. We will begin
by illustrating the developments of priority queue-based shortest path algorithms from
Dijkstra’s original formulation to Thorup’s results [8]. We will then move on to analyzing
the connection between the aforementioned class of methods and the problem of sorting; in
order to do so, we will present Thorup’s results [10; 12] on the equivalence of sorting and
priority queues. Finally, we will tie the discussion back to single-source shortest paths by
showing the results obtained by Thorup [9], who studied methods that bypass the sorting
bottleneck by relaxing the order in which the graph nodes are visited.

Keywords: SSSP, Sorting, Priority Queues, Thorup’s algorithm

1. Introduction

The Single-Source Shortest Paths (SSSP) problem is one of the most fundamental issues
studied in theoretical computer science. The problem is to compute, given a graph and a
single source node within the graph, the path of least distance from that source to every
other node. In this paper, we mostly examine the SSSP problem on graphs with non-
negative integer weights, which has connections to both integer priority queues and integer
sorting algorithms.

This problem has great practical importance, and there are several well-known algo-
rithms that have been developed to approach it. Dijkstra’s algorithm, which is probably
the most widely used algorithm, uses a greedy optimization strategy that is best imple-
mented using a priority queue. Priority queues are data structures which at minimum allow
for insertions and deletions of elements as well as tracking of the minimum stored element.
While they are important on their own, their connection to the SSSP problem through
Dijkstra’s algorithm has motivated the discovery of fast integer priority queues discussed in
Section 3.

Priority queues are also deeply linked to sorting: given a priority queue, clearly it is
possible to sort a set of elements by inserting them all and then repeatedly removing the
priority queue’s minimum. Interestingly, this connection also goes in the opposite direction
as well, which was shown by Thorup in 2007 [12]; this is discussed in Section 4. As a result,
one can use developments in integer sorting to create faster implementations of Dijkstra’s
algorithm. However, we see that the link between sorting and priority queues introduces
“bottleneck” for solving the SSSP problem using Dijkstra’s algorithm, since in order to
solve integer SSSP using Dijkstra’s we would also have to solve integer sorting.

For this reason, there have also been attempts to solve the integer SSSP problem without
using Dijkstra’s in order to avoid this “bottleneck.” In particular, we will discuss in Section
5 a linear-time algorithm presented by Thorup [9] which solves SSSP on undirected graphs,

demonstrating that it is possible to solve SSSP quickly without using Dijkstra’s algorithm
and priority queues.

2. Integer SSSP and the RAM Model

In this paper, we discuss the specific type of the SSSP problem where all edge weights
are non-negative integers. Explicitly, given a graph G = (V| E) where each edge has an
associated non-negative integer weight and a single source node s € V, we compute the
shortest path from s to all other vertices in V. Throughout, we will use n = |V| and
m = |E|. Since the edge weights are all non-negative, we focus on monotonic priority
queues, which are priority queues where the minimum value in the priority queue never
decreases. Additionally, since we are considering the integer version of SSSP, we focus
mainly on integer priority queues and integer sorting algorithms.

Since we are working with integers, it is useful for us to define the RAM model as
an alternative to the so-called comparison model. In the comparison model, determining
the order of elements can only be done via binary comparisons, and it is well known that
under this model, sorting any set of n comparable elements can be done in no better than
O(nlogn) operations. In the RAM model, elements, in this case integers, are stored in
binary in machine words of length w, and we are able to add, subtract, and shift! machine
words in constant time. However, a machine word could hold multiple integers, allowing a
single operation to encode a larger number of comparisons, leading to sorting algorithms
running in o(nlogn).

The advantage of the comparison model is that it allows sorting on a broad class of
elements, while the RAM model’s advantages apply only to non-negative integers. However,
Thorup argues in his paper that non-negative integers may be used to represent a variety of
other domains while still preserving intact ordering. An example of this is negative integers.
Suppose that we are storing integers with the highest degree bit meaning a negative number.
Then, it is sufficient for us to flip this signed bit and consider the result as an unsigned
integer, and the resulting ordering of numbers will be the same as the ordering of the
(possibly negative) integers before the bit switch.

On the other hand, the flexibility given by integer operations is truly impactful when
it comes to the performance of the algorithms of interest for this paper. As previously
mentioned, the key insight is that a single operation may help manage what otherwise would
necessitate a number of comparisons. For example, Albers and Hagerup [1] introduce the
concept of “packed sorting” by demonstrating how two machine words, each containing k
elements in sorted order, can be merged into two sorted machine words in O(logk) time,
compared to the O(k) that the comparison model would yield. Even for larger keys (that
still fit in a machine word), Hagerup [1] gives a method that can sort in O(nloglogn)
time. Many of the results discussed leverage the power of the RAM operations, so for the
interested reader, Hagerup [5] further defines the model and discusses it in additional depth.

1. In particular, multiplication is not a constant-time operation (with respect to the word length) in general.
However, it is often possible to avoid the use of multiplication with little to no loss in performance.

SSSP, SORTING, AND PRIORITY QUEUES ON THE WORD RAM

3. Developments in Monotonic Priority Queues

3.1 From Priority Queues to SSSP

As mentioned previously, Dijkstra’s algorithm is the most well-known method for computing
single-source shortest paths. This algorithm maintains two sets of graph nodes: a set V' of
visited nodes and a set V' \ S of unvisited nodes. V' \ S is maintained as a priority queue,
where each node v is stored with a key that represents the currently known distance D(v)
from the source to it. D(v) is defined as the distance from s to v using only nodes in S, as
opposed to d(v), the actual shortest distance from s to v. Initially, D(v) is set to zero for
the source node and oo for every other node. Because the weights are non-negative, for the
closest unvisited node, D(v) = d(v), so the algorithm computes all d(v) by progressively
visiting the closest unvisited node by taking the minimum element of the priority queue
containing V' \ S, adding it to S, and updating each distance D(v) from the source for all
vertices adjacent to this minimum.

The typical implementation of this algorithm has a runtime of O(m-T'(decrease-key)+
n - T'(extract-min)), assuming the initial construction of the priority queue is dominated
by the cost of these operations. So the main approach to designing priority queues has been
to make decrease-key constant-time and then to minimize the runtime of extract-min.
For sparse graphs, however, it is reasonable to simply try to make both operations as fast
as possible. In his 1996 paper [8], Thorup presents a basic monotonic priority queue which
gives a O(mloglogm) solution to the SSSP problem which we will discuss here.

3.2 Thorup’s O(loglog k) Priority Queue

Thorup defines a “basic” priority queue as a priority queue supporting three operations:
find-min, insert, and delete-min. For Dijkstra’s algorithm, instead of performing a
decrease-key operation, we can simply insert a new node with the updated key without
deleting the old node from the queue. Although the number of keys in the queue is still
O(m), the number of extract-min operations is now §2(m). We also view extract-min as
find-min followed by delete-min. Thorup constructs a basic priority queue that provides
find-min in constant time, and insert and delete-min in O(loglog k) time where k is the
number of keys in the priority queue, which gives both decrease-key and extract-min in
O(loglogm) time, yielding an overall runtime of O(m loglogm) for SSSP.

To create this basic priority queue, Thorup leverages two previous results: the ability to
quickly merge two RAM words containing sorted keys proved by Albers and Hagerup [5],
and the existence of a basic priority queue that supports a small number of keys with small
values where all operations take constant time shown by Raman [7]. Specifically, Albers
and Hagerup state that two RAM words each containing k sorted keys can be merged into
two words in O(log k) time, and Raman provides a constant-time basic priority queue for k
keys of length at most O(%) where w is the word-length.

Thorup expands on these results to build another constant-time basic priority queue,
this time supporting k keys with size at most O(W). Thorup then uses this priority
queue along with the recursive range-reduction technique used by van Emde Boas priority
queues to obtain a basic priority queue for general integers with constant-time find-min
and O(loglog k) time insert and delete-min.

3.2.1 BUILDING A CONSTANT-TIME INTEGER PRIORITY QUEUE

To give intuition for the constant-time basic priority queue, Thorup first constructs a basic
priority queue offering amortized constant-time operations. In order to hold k keys each of
length at most O(m), he uses one of Raman’s constant-time basic priority queues
which can hold O(log kloglog k) keys of length O(pz710s1oz7) (call this data structure R)
and a series of “buffers” By, B1, Ba, ... Biogr Where each buffer B; contains keys sorted and
packed into at most 2" words. Additionally, there is another one of Raman’s constant-time
basic priority queues M that holds the minimum key of R and the minimum key of each B;
as well.

We see that find-min is the same as calling find-min on M, which takes constant time.
Additionally, delete-min is the same as calling delete-min on M, which takes constant
time, and then either deleting from R or some B;, which can be done in constant time.
Thus, the only operation left to consider is insert.

When we call insert, we always try to insert into R. If we insert while R is already
full, we extract all the keys in R in order, and pack them into one sorted word to be placed
into By, which may itself overflow. In general, we place a sorted list of (at most) 2¢ words
into B; by merging these with the current contents of B;, which can be done quickly (in
O(2'log(log k loglog k))) as shown by Albers and Hagerup [6]. If the result from the merge
is less than 2¢ words, then we keep it in B;, and otherwise, we place it in B, .

We see that extracting all the keys from R and packing them into a word to be placed
in By takes constant time per key. Additionally, for an insert resulting in merges up to
buffer B;, we see that we must have at least 2'~! words of keys, and thus, for each merge,
we see that it takes O(%) = O(@) time per key. Since there are at most log k
buffers, it follows that it takes constant time per key to perform all the merges, and thus
insert takes amortized constant time.

3.2.2 BUILDING A GENERAL INTEGER PRIORITY QUEUE

Thorup provides modifications to de-amortize this priority queue, which are interesting but
will not be discussed in this paper. He then uses the resulting constant-time basic priority
queue on k keys of size at most O(W) and recursively builds a general basic priority
queue with O(loglogk) insert and delete-min. Essentially, for a priority queue with b-
bit keys, we split each key into the b/2 most significant bits, which we denote high(z).
and the b/2 least significant bits, which we denote low(x). We create a priority queue H
of b/2-bit keys keyed by high(x) and then create a priority queue L[h] keyed by low(x)
where h = high(x). Similar to van Emde Boas priority queues, we store the minimum
value of each priority queue non-recursively, so each insert or delete-min requires only 1
non-constant-time recursive call to one of the b/2-bit priority queues.

This allows us to form the recurrence T'(b) = O(1) + T'(b/2) where T'(b) is the time for
insert or delete-min for a priority queue with b-bit keys. Since Thorup constructed a
m—bit priority queue that can hold k keys with constant-time operations, it follows
that from this recurrence that insert and delete-min take O(loglogk) time, assuming
each key must be able to be contained in one word.

One of the drawbacks to this priority queue is its space complexity. Since we recursively
define priority queues, this deterministic algorithm takes O(k2") space. However, Thorup

SSSP, SORTING, AND PRIORITY QUEUES ON THE WORD RAM

also provides a randomized modification that takes O(k) space while still giving expected
O(loglog k) time per insert and delete-min. Later, in 2003 Thorup modified this priority
queue to also support constant-time decrease-key, using exponential trees and Fibonacci
heaps, giving an O(m + nloglogn) solution to the SSSP problem.

4. From Sorting to Priority Queues

As mentioned earlier, given a priority queue that can perform operations in O(S(n)) time, we
can sort in O(nS(n)) time by inserting the items into the priority queue and then repeatedly
extracting the minimum item. Interestingly, Thorup also showed the reverse: given the
ability to sort n keys in O(nS(n)) time, we can construct a priority queue supporting insert
and delete in O(S(n)) time, and find-min in constant time, assuming our integers can fit
within a single machine word in the RAM model [12].

There are several key insights involved in the construction. First, there is laziness—
because in a priority queue we only ever query the minimum element, we don’t have to keep
the whole thing sorted. Instead, we store the keys in buckets (base sets) that are divided
into progressively smaller chunks (by level splitters). The buckets are sorted relative to each
other, but not internally. Of course, we have to somehow take advantage of the (assumed)
ability to sort quickly. A second level of laziness is that instead of moving keys around
one at a time, store them in buffers until there are enough for merging them into the
buckets to be efficient. This is where the (assumed) ability to sort quickly is used: before
merging the contents of a buffer into the buckets, sort the buffer. Finally, similar to how
the priority queues from the previous sections use small, fast priority queues to handle the
most important parts of their structure, we use two atomic heaps, one to store the bucket
containing the smallest keys, and one to store the splitters.

4.1 Atomic Heaps

Although atomic heaps, due to Fredman and Willard [2], illustrate many of the techniques
relied on throughout, we will stay at the same level of detail and not describe their construc-
tion. Instead, we will simply use the result that given m preprocessing time and space, we
can construct a heap with size O(log? m) that allows for constant-time find-min, insert,
and delete.

There are a couple of notes that should be made about atomic heaps. First, they
are definitely mot practical: aside from their complex implementation and large constant
factors hidden in their asymptotic runtime, they are only defined for n > 212%, Secondly,
their original implementation uses multiplication, which is not an AC? operation—that is,
multiplication cannot be implemented by a circuit of constant depth. However, it was later
shown by Thorup that atomic heaps can be implemented using only ACY operations on (at
the time) new processors, so this issue falls back under the issue complex implementation.
Finally, avoiding using atomic heaps is sometimes possible with no loss in performance and
often possible with only a small loss in performance. It seems that their convenience—in
situations where a few small, fast priority queues would be helpful—causes them to be
invoked often, before being replaced later.[11]

4.2 Construction of the Priority Queue

Returning now to the problem of using sorting to construct a priority queue, let ® be the
first multiple of 12 greater than log n. The queue will have disjoint base sets Ag, A1, ..., A,
each containing between ®/4 and ® keys (so that there are ©(n/logn) base sets in total).
The base sets are ordered relative to each other, but are not required to be internally
sorted. Consecutive A;, A;+1 are separated by s;i1, a base splitter (which is not a key), so
that max A; 1 < s; < min A,.

For each base set, we have a doubly linked list containing the keys of the set. In each
node of the list, a pointer to the base set itself will also be stored. Also, we store a counter

The list of base sets will be stored (in sorted order) as a doubly linked list, along with
the associated splitters.

The first base set Ag (the “head”) will also be stored in an atomic heap. Because
|Ao| = O(logn), these keys will fit in an atomic heap that can be constructed in O(n)
time/space.

Similar to in a skiplist, I = log,(n/®) = 0(logn) base splitters are promoted to become
level splitters tg,t1,...,t+1. It will be enforced that for each j, there are more than %4j<1>
base keys below ¢;, and less than £4j ® keys below ;.

The level splitters are also stored in an atomic heap, which will be called the pre-searcher.

Finally, for each j = 1,...,[, we associate with the splitter ¢; a buffer B; containing at
most 47 keys. The buffers may overlap: we require only that the keys in Bj arein [tj, tji2).
Each buffer B; is stored as a doubly linked list, and is associated with a counter g; for the
number of elements.

Initially, the buffers will be empty. This means that rebuilding the structure from a
sorted list can be done in linear time, which implies that the queue could be easily modified
to be of variable size (amortizing by table doubling).

4.3 Operations

find-min is immediately taken care of—we can simply query the atomic heap containing
Ag in constant time.

For insert and delete, let’s ignore for now the issue of maintaining the invariants
outlined above. That means that for delete, where we assume we are given a pointer to
the node to delete, we can simply remove it from the doubly linked list it is contained in
(base set or buffer), and from the atomic heap corresponding to Ay, if applicable. We also
decrement any associated counters—all constant time operations.

For insert(x), we first check if x is smaller than the first level splitter, ¢1. If it is, then in
constant time we compare against the base splitters smaller than ¢; and add x to the proper
base set. Otherwise, we use the pre-searcher to find the appropriate level splitter, add z to
the corresponding buffer, and increment the counter. Again, this all is constant-time.

4.4 Maintaining Size Invariants

Now, we will discuss how to move keys around to maintain the size invariants on buffers
and base sets.

SSSP, SORTING, AND PRIORITY QUEUES ON THE WORD RAM

When a buffer B; reaches 47 keys (we check this using the associated counter), we flush
by first sorting B; and then moving the keys from the buffer into the base sets. It’s worth
emphasizing that this is the only place we use the assumed sorting algorithm—everything
else can be handled using fast known data structures. Once the buffer is sorted, merging it
with the sorted list of base splitters can be done efficiently in O(47) time: the largest key
in Bj is less than ¢ 2, which has at most £4j+2@ base keys below it, which implies at most
247%29 /(®/4) base splitters below it. The runtime of this is dominated by the sorting,
which is O(S(n)) amortized (per key) by assumption.

Now, the above merging of the buffer may cause base sets to overflow. Also, deleting
keys may cause base sets to underflow. We can resolve both of these issues in a similar
fashion to B-trees: split the base set or merge it with one its neighbors. That is, if a base
set reaches the upper bound of ® keys, we split it around its median, which becomes a new
base splitter. If a base set is depleted to its lower bound, ®/4 keys, we merge it with one of
its neighbors, and then split if necessary. Joins and splits each run in O(®) time (including
any necessary updates to the atomic heap on Ag), which can be amortized over the Q(®)
updates which must happen before more than a constant number of joins or splits can occur
(the details here are nothing new and so are omitted).

There are couple of details here:

e First, a minor point—in addition to single insert or deletes, flushing a buffer may
induce splits or joins, and so the cost of these operations should be amortized in the
same way as the cost of the merge.

e Second, and more importantly, we do not want to destroy base splitters that have
been promoted to be level splitters. However, each base set has at least one neighbor
that it can be safely joined with, except for the very last base set, which we will simply
allow to become arbitrarily small.

4.5 Maintaining the Level Splitters

The final invariant to maintain is that of the level splitters.

First, for simplicity, we will always flush B; before modifying ¢;, so as to trivially ensure
that min B; > t;. Conversely, it will be convenient to modify ¢; when we have flushed B;.
Finding an appropriate base splitter to promote can be done by scanning through the base
sets, adding up the counters until reaching the desired level. This takes O(47) time, by
essentially the same argument for the merging step of flushing.

Now, note that with the chosen constants, we can’t wait for a buffer to be flushed before
updating the level splitter. Thorup chooses to increment buffer counters more often than
items are added to the buffer, in such a way as to ensure that the level splitters are updated
often enough, and there are good reasons for doing this. However, one could argue that
allowing a larger range for the level splitters is simpler and sufficient for the amortized
bounds claimed here.

4.6 Runtimes

From the analysis above, it should be clear that the desired runtimes have been achieved
(amortized). When inserting an item, we can charge it for the cost of flushing it will

incur, as well as some constant cost for merging, splitting, and eventual deletion, giving
O(S(n)+0(1)) = O(S(n)) amortized cost per update, as desired.

We will not discuss this here, but Thorup proceeds to show how to de-amortize this
construction, achieving the same guarantees but for the worst-case operation of the queue.
He also manages to avoid using an atomic heap for the pre-searcher without changing the
running time, but the atomic heap for the head Ay seems to be necessary to get the claimed
runtimes, so we will not present this either.

As a remark, there are a couple of reasons why the reduction from sorting to priority
queues is interesting in a larger sense. Of course, it gives a way to take advantage of progress
on sorting to make progress on priority queues. Also, more pessimistically, it may provide
a way to lower bound the time required to sort, by finding a lower bound on priority queue
operations.

Practically, for algorithms such as Dijkstra’s and Prim’s, constant-time decrease-key is
highly desirable. Here, given O(S(n)) insert and delete, we can implement decrease-key
in O(S(n)). However, it is not known if a general sorting to priority queue reduction can
achieve constant-time decrease-key.

Thorup (again) did manage to demonstrate a priority queue achieving constant-time
insert and decrease-key and delete in O(loglogn) time [12], which is good as could be derived
from the current best known deterministic sorting algorithm, running in O(n loglogn) time.
It is currently unknown if a priority queue to match the known randomized O(n+/loglogn)
sorting algorithm can be made.

In any case, we will return now to the other direction, the obvious reduction from priority
queues to sorting, which motivates a different approach to SSSP.

5. Avoiding the Sorting Bottleneck for SSSP

In the previous sections of this paper, we discussed the connection between sorting, priority
queues and the SSSP problem. This suggests an important question: whether or not it is
possible to achieve a faster SSSP runtime by using something other than Dijkstra’s algorithm
and priority queues. The invariant that makes Dijkstra’s algorithm correct is that for the
vertex in V'\ S with minimum key D(v), we are guaranteed that D(v) = d(v) and so visiting
v is certainly correct. Thorup, on the other hand, attempts to find weaker conditions that
imply D(v) = d(v), which would allow vertices to be visited in some acceptable ordering
even without needing to keep track of the minimum distance. This results in a linear-time
algorithm that solves the integer SSSP problem on undirected graphs [9]. This section of
the paper will describe Thorup’s algorithm, sketch a proof of its correctness, and analyze
its runtime.

5.1 Relaxing Visiting Rules via Bucketing

As anticipated above, Thorup’s algorithm is fundamentally different from Dijkstra’s because
it does not attempt to establish a strict visiting order for vertices. Rather, just like the
priority queue in Section 4, it uses buckets which allows for some freedom in picking the
next vertex to visit. This algorithm places all vertices into buckets such that given the
appropriate bucket, we can choose to visit any vertex in this bucket. The challenge is, of

SSSP, SORTING, AND PRIORITY QUEUES ON THE WORD RAM

course, devising a bucketing scheme that allows the above process to be performed correctly
and efficiently.

Intuitively, the problem of efficient bucketing can be approached as follows: suppose
we have two groups of vertices, which are only connected to each other by edges with very
large weights. It follows that if the two groups have a similar distance from the source, the
shortest paths to any vertices in these two groups must not use the connecting edges with
very large weight, so the shortest path to any vertex in one of the two groups will not go
through the other. Thus, we can visit the two groups in either order.

We can formalize this intuition: suppose that the vertex set V' is partitioned into subsets
V; such that all edges between vertices in different subsets have weight at least §. Addi-
tionally, suppose we can find some i and some v € V; \ S where D(v) = min(D(V; \ S)) <
d +min(D(V'\ S)), then D(v) = d(v).

To prove this statement, consider the shortest path from s to v. Let u be the first
vertex in the path not in S. We have that D(v) > d(v) > d(u) = D(u). If u € V;, since
D(v) = min(D(V; \ 5)), we know that D(u) > D(v), so D(v) = d(v). Otherwise, any path
from u to v must cross at least one edge of length §, so D(v) > d(v) > d(u)+06 = D(u) +9.
We see that

D(u) 4+ 6 > min(D(V\ S)) + 3 > min(D(V; \ S)) = D(v),

so it follows that d(v) = D(v).

The second case of this proof demonstrates how this algorithm can do better than
Dijkstra’s. Clearly, the path from s to u is shorter than the path from s to v, so Dijkstra’s
algorithm would necessarily visit u before v. However, d(v) = D(v), so it is also valid to
visit v before u. This gives us some intuition towards Thorup’s algorithm: in this case, the
group of vertices containing w is different from the group of vertices containing v, but the
two groups are far enough apart, so we can visit them in arbitrary order.

5.2 Efficient Bucketing: The Component Tree

Thorup implements his bucketing structure via a so-called component tree. In order to
understand the component tree, we must first define a component hierarchy, which is a
hierarchy of vertex partitions that, like the example above, are separated by edges of at
least a certain weight. We define the hierarchy as follows: let G; be the subgraph of G
that contains all vertices in G' and all the edges in G of length smaller than 2¢. We find all
connected components of G; and define [v]; as the connected component of G; that contains
v. We say that [v]; is the parent of [w];—; if and only if [w]; = [v];. We now define the
component tree 1" as follows: each of the nodes of T" is a connected component in one of the
subgraphs G;. The root of T is the entire graph G, which we can also express as [v], for
any v € V, where r is the most significant bit of the longest edge in G. The leaves of T are
connected components of Gy, which are simply the vertices of GG, and each interior node is
connected to its parent and its children as per the definition given above. We additionally
disregard any node with only one child, and connect the child to its lowest ancestor with
two or more children.

The result is a tree where each node has at least two children, and each node’s connected
component is a strict subset of its parent. As mentioned above, each leaf is a graph vertex,
so there are n leaves in total, and thus the component tree will have at most 2n — 1 nodes.

This description of the graph is quite useful for Thorup’s goal, since it establishes a recursive
bucketing structure that follows the intuition from before. Figure 1 gives an example of a
graph and its corresponding component tree:

Figure 1: A graph and its component tree

A 16
[Als
¥ r
A
255_@_255 s—() [Cl
v
64 15 [Ale DI
® ® L & &
D 1 E

Creating the component tree is easily done by maintaining a union-find data structure
and processing the graph’s edges in sorted order according to their most significant bits.
Whenever we process an edge whose most significant bit is larger than all those seen before,
we know that we are moving to a higher level of the hierarchy, and so we can add all the
elements in our union-find to the component tree. This construction can be achieved with
a running time of O(ma(m + n)) thanks to Gabow’s data structure [4] and bucket sorting
on the edges’ most significant bits. However, Thorup explains that it is possible to improve
on this bound. When building the component tree, we are only interested in connectivity
via short edges, so we can restrict our analysis to the edges in a minimum most significant
bit spanning tree of the graph instead of its entirety. Creating such a MST can be achieved
using Fredman and Willard’s atomic heaps [2] in linear time, and once we have a tree instead
of a full graph, we can use Gabow and Tarjan’s [4] tabulation-based union-find structure to
build the component tree in linear time.

Al [Bl [Cl [Dl [El [Flo [G]

5.3 Visiting the Component Tree Nodes

Now that we have constructed the component tree, we need to establish a visiting scheme
that correctly traverses this structure. As we visit a node, we can imagine having access to
all its children as elements in an array of buckets. For each node [v];, we have an array of

buckets that its children may be placed in; we place child [w];—; in the bucket whose index
min(D([w];1 \ 9)

27,

is equal to | |. Notice how this, once again, follows the intuition that we
were talking about in Section 5.1: we can pick arbitrarily among two buckets as long as
they are at similar distances to the source and are separated by long enough edges. Then,
visiting a node in the tree is the same as iterating through its array of buckets and visiting
any nodes encountered in any of the buckets. When we find a leaf of the component tree,
we finally visit the corresponding vertex, and relax all its adjacent edges, which may require

us to update the visiting order of any of the unvisited nodes in the tree.

5.4 A Data Structure for the Unvisited

This highlights the need for another data structure, designed to manage the minimum
distances to all the unvisited nodes. Specifically, we need a data structure that, given

10

SSSP, SORTING, AND PRIORITY QUEUES ON THE WORD RAM

P

in(D(|wli—1 \ S
and upon visiting any unvisited node [v];, can delete it and compute me(([Ui]l il)J

any root the subtree of an unvisited node [v];, can update and report |

min(D([o); \ S)

for any child [w];—1. Luckily, Gabow’s split-min data structure [3] was built exactly to
fulfill this role, achieving a running time of O(ma(m + n)) throughout the execution of
the algorithm. Thorup, however, proposes an alternative solution based on atomic heaps,
which can achieve a linear running time.

5.5 Linear-time SSSP

Consider now the algorithm as a whole: first, Thorup proposes to build a minimum most
significant bit spanning tree for the graph, and then use it to construct a component tree.
Using atomic heaps, this takes linear time; otherwise, it requires O(ma(m +n)) operations.
Thorup then initializes the aforementioned “unvisited data structure” from Section 5.4,
and uses the scheme defined above to visit the entire component tree, starting at the root.
Thorup proves that the the number of necessary buckets is also O(m + n), showing that
SSSP is solvable in linear time in the RAM model. Before arguing about the algorithm’s
correctness, there is an important point to make about the running time: while atomic heaps
offer extremely powerful theoretical results, it is worth noting that they are defined only for
n > 21220, which makes them practically useless. On the other hand, the union-find data
structure that is proposed as an alternative offers good (even if super-linear) theoretical
bounds and better practical performance.

We may now move on to arguing why the algorithm proposed by Thorup correctly
computes the shortest path from the source of the graph to all vertices. While the full proof
of the algorithm is beyond the scope of this paper, we want to sketch an argument that can
prepare the interested reader for following its structure.

First, we consider any parent node [v]; in the component tree. Given one of its children

[w]i—1, we say that [v];—1 is a min-child of [v]; if Lmin(D([gﬂi_l \ S)J = Lmin(D;[;}]i \ S)j

Then, given any other component tree node [v]; that contains any unvisited nodes, we say
that [v]; is minimal if it is a min-child of its parent and its parent is also minimal. Thorup
shows that given any minimal node [v];, we have that min(D([v]; \ S) = min(d([v]; \ S).
Applying this condition to a leaf implies that if only minimal leaves are visited, the algorithm
will correctly find a shortest path. Notice the analogy with Dijkstra’s algorithm: Dijkstra
defines a global minimum, while Thorup constructs this notion of minimality that can obtain
the same result.

Going further, Thorup proves that as we visit vertices and relax edges, while we decrease
the distance to some of the unvisited nodes, we do not alter the minimality of the nodes
currently being processed. This means that all the nodes processed are always minimal,
which ensures the algorithm’s correctness.

5.6 Other Developments

Besides Thorup’s algorithm, there have been other attempts to approach SSSP using an
approach that deviates from Dijkstra’s algorithm. Hagerup, for example, wrote a paper that
attempts to extend Thorup’s result to directed graphs. The result obtained, however, does

11

not achieve a linear running time; rather, it runs in O(n + mlog (w)) time, which achieves
the same O(m loglogm) runtime as Thorup’s priority queue from 1996 for directed integer
SSSP, but can be extended to SSSP’s close relative APSP (All-Pairs Shortest Paths) to
provide a O(nm + n?loglog (n)) time solution.

6. Conclusion

We surveyed the work of Mikkel Thorup, who manages to tie together the three fundamen-
tal problems that were of our interest: SSSP, sorting, and priority queues. Thorup proves
results for the integer SSSP problem by taking advantage of the RAM model, achieving
remarkable results in the field. Specifically, we discuss above Thorup’s advances in building
effecient priority queues, his result that shows the equivalence between sorting in the RAM
model and integer SSSP, and finally his approach to SSSP that does not rely on priority
queues at all. The connections established between priority queues, sorting, and SSSP sug-
gest some possible results. For instance, a O(n+/loglog n) randomized sorting algorithm was
given by Han [13], which implies the existence of a priority queue with O(y/loglogn) opera-
tions, and thus a O(m+/loglogm) algorithm for SSSP. However, just as Thorup presented a
deterministic priority queue with O(loglogn) operations, but constant time decrease-key,
it can be conjectured that there is a randomized O(+/loglog n) priority queue with constant-
time decrease-key, offering a O(m + ny/loglogn) solution to SSSP, which remains as an
open problem.

Additionally, the connection between sorting, priority queues, and SSSP indicates that
finding a fast algorithm for integer sorting would also provide a fast algorithm for SSSP.
However, it would be enlightening to see if a connection could be drawn on the last missing
side of our triangle: that is, from SSSP to sorting. Results like the linear-time solution
to undirected SSSP presented in Section 5 suggest that perhaps SSSP is not equivalent to
sorting, yet the question of equivalence between SSSP and sorting is still open. We hope
that our survey provides insight on how and why these three problems are related, and how
approaching one can help us devise strategies to approach the others.

Acknowledgments

We would like to acknowledge the 6.854 staff for all the helpful lectures and insights from
this semester.

12

SSSP, SORTING, AND PRIORITY QUEUES ON THE WORD RAM

References

1]

2]

[3]

ALBERS, S., AND HAGERUP, T. Improved parallel integer sorting without concurrent
writing. Information and Computation (1992).

FREDMAN, M., AND WILLARD, D. Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. Journal of Computer and System Sciences (1994).

GAaBOW, H. A scaling algorithm for weighted matching on general graphs. 26th Annual
Symposium on Foundations of Computer Science (1985).

GABOW, H., AND TARJAN, R. A linear-time algorithm for a special case of disjoint
set union. Journal of Computer and System Sciences (1985).

HaceruP, T. Sorting and searching on the word RAM. Proceedings of the 15th
Symposium on the Theoretical Aspects of Computer Science (1998).

HaGeruP, T. Improved shortest paths on the word RAM. Lecture notes in computer
science (2000).

RaMAN, R. Priority queues: small, monotone and trans-dichotomous. Lecture notes
in computer science (1996).

THORUP, M. On RAM priority queues. SIAM journal of computing (1996).

THORUP, M. Undirected single-source shortest paths with positive integer weights in
linear time. Journal of the ACM 46-3 (1999).

THORUP, M. Integer priority queues with decrease key in constant time and the single
source shortest paths problem. Journal of Computer and System Sciences (2003).

THORUP, M. On AC? implementations of fusion trees and atomic heaps. Symposium
on Discrete Algorithms (2003).

THORUP, M. Equivalence between priority queues and sorting. Journal of the ACM
54-6, 28 (2007).

THORUP, M., AND HAN, Y. Integer sorting in O(ny/loglogn) expected time and
linear space. Proceedings of the 43rd Symposium on Foundations of Computer Science
(2002).

13

