
Final Reading Project:

Polylogarithmic Approximation Algorithn for Routing with

Constant Congestion

Tal Wagner∗

December 11, 2014

1 Introduction

The Edge-Disjoint Paths (EDP) problem is a fundamental NP-hard routing problem, in which we
are asked to connect given pairs of nodes in a graph with paths not sharing any edges. A natural
relaxation is to allow some edges to be shared by a small number of paths, a variant known as EDP
with Congestion (EDPwC).1

We survey a remarkable sequence of breakthrough results that significantly improved the known
approximation bound, achieving the first polylogarithmic approximation with constant congestion.
The main algorithm we present is due to Chuzhoy [Chu12]. It relies on much previous work
and merges a broad variety of concepts and ideas, and so our goal will be to survey each of the
components and explain how they fit together. We will usually not provide full analysis (doing this
for each component would easily span dozens of pages), but rather try to extract and convey the
main ideas.

1.1 Setting and Notation

We fix the following terminology and notation for the entire report. We are given an instance
undirected and unweighted graph G(V,E), with |V | = n nodes and k demand pairs (si, ti)

k
i=1 that

are contained in V . Our goal is to connect as many demand pairs as possible with paths, such
that each edge in E is used by at most c paths, where c is an integer congestion constant. We
can assume w.l.o.g. that each node participates in at most one demand pair. The transformation
allowing this can be left as a simple exercise; solution is given in footnote.2

A node participating in a demand pair is called a terminal, and we denote the subset of terminals
by T (so T = ∪i{si, ti}). In many parts of the discussion it will convenient to discuss terminals in
general, regardless of how they are paired. We will abuse notation by letting k denote also the size
of T (rather than 2k), to avoid confusing constants.

For any disjoint subsets of nodes A and B, we denote by E(A,B) the subset of edges with one
endpoint in A and one endpoint in B.

We use poly log k to denote any polylogarithmic factor in k, i.e. O(logb k) for any constant b.

∗Email: talw@mit.edu
1In PSet10 we tackled a related variant of EDP, in which had to route all the pair while minimizing the maximum

congestion on any edge. We achieved O(logn) congestion; the best known bound is O(logn/ log logn) ([RT87]).
2If s is a terminal participating in two demand pairs (s, t1) and (s, t2), we add two new vertices s1, s2 and edges

s1-s and s2-s. We then replace the demand pairs (s, t1) and (s, t2) with (s1, t1) and (s2, t2).

1

2 Preprocessing

We start with a preprocessing phase that reduces the general case to instances that have better
guarantees on the connectivity between the terminals. The latter instances will be the focus of
Section 3.

2.1 Routing on Expanders

It is instructive to start by thinking what are the sources of difficulty in our problem. We can
identify two obstacles: First, since we are not going to route all the pairs (due to NP-hardness), we
wish to somehow choose the ones that are easier to connect (in order to route as many as possible).
Second, having decided which terminal pairs to focus on, we need to figure out how to route them
through the non-terminal vertices. We will start by considering a simple setting that avoids both
these hurdles: all the vertices are terminals (V = T), and the entire graph is very well connected.
To formalize the discussion we should define well connected graphs, which are known as expanders.
There are several ways to define them, and the variant that we use here is called edge-expansion.

Definition 2.1. A graph G(V,E) is an α-expander if for every cut (S, V \ S),

|E(S, V \ S)| ≥ α ·min{|S|, |V \ S|}.

Definition 2.1 evaluates cuts by the ratio of crossing edges to the size of the smaller side, rather
than by the absolute number of edges (as in the Minimum Cut problem). We will simply call
a graph an expander if it is an α-expander for a constant α > 0, that may be arbitrarily small
(so long as it is Ω(1) and does not diminish as n grows). These graphs, particularly when sparse
(say with constant vertex degrees), have an overwhelming variety of applications in Mathematics
and Computer Science. They display connectivity properties comparable to those of the complete
graph Kn (in a sense that we will not define here), and manage to do it with much fewer edges –
for example, 3-regular3 expanders are known to exist.

As explained above we expect routing through expanders with V = T to be easier than the
general case. For illustration, suppose we have a 3-regular expander in which the n nodes are
paired into demand pairs (s1, t1), . . . , (sn/2, tn/2). Let us show an O(1)-approximation: Consider
the cut (S, V \ S) with all the si’s on side S and all the ti’s on the other side. By the expansion
property we have 1

2αn edges crossing the cut. Since the degrees in S are bounded by 3 we have
at least 1

6αn nodes in S incident on crossing edges. Since the degrees in V \ S are also bounded
by 3, we can match at least 1

18αn vertices in S to unique nodes in V \ S. We have thus routed
1
18αn pairs on disjoint paths of length 1 each, and since we have |V | = n terminals, this yields
O(1)-approximation.

For less restrictive bounds on the degree, there are known routing algorithms on expanders with
V = T that achieve approximation of roughly Ω(1/ log n) (see [Fri00] for a survey of some results in
this vein). The specific result we will use is due to Rao and Zhou [RZ10] and is summarized in the
next theorem (some details are omitted for simplicity). Importantly, it has the added property that
the routing is not just edge-disjoint but also node-disjoint, which will be required for the analysis
we present. Observe that it is a stronger property since node-disjoint paths must be edge-disjoint,
but not vice-versa.

Theorem 2.2 (informal). If G is an expander with its nodes paired into n/2 demand pairs, then
we can efficiently find a node-disjoint routing of Ω(n/ log n) demand pairs.

3Recall that a graph is d-regular if the degree of each vertex is d.

2

The algorithm achieving this is the natural greedy one: Find the the shortest path connecting
any demand pair, remove the path from the graph (all edges and nodes), and iterate. The resulting
routing is then clearly node-disjoint. We leave he analysis of the approximation guarantee out of
scope for this report, in the interest of focusing on the general case.

2.2 Well-Linkedness

Let us now remove the simplifying assumption V = T . This reinstates the first hurdle mentioned
above of having to choose the best demand pairs to route. Some pairs may be better connected
than others, and intuitively we wish to focus on them, and declare the poorly connected pairs “lost
causes”. To formalize this we need a notion of good terminal connectivity, as opposed to the overall
connectivity that was formalized by expanders. We use the following.

Definition 2.3. In a graph G(V,E) with terminals T , a subset W ⊂ V is α-well-linked if for every
S ⊂W ,

|E(S,W \ S)| ≥ α ·min{|S ∩ T |, |(W \ S) ∩ T |}.

Compare this definition to Definition 2.1. It as a generalization in two senses: it applies to
subsets W ⊂ V , and more importantly, it evaluate cuts by the number of terminals in the smaller
side, rather than by the total size of the smaller side. Put differently, if V = T , then V being
α-well-linked is equivalent to the graph being an α-expander.

We will say W is well-linked (with respect to a given set of terminals) if it is α-well-linked
for some α ≥ 1/poly log k. We will also slightly abuse terminology and say that the terminals T
are well-linked in W . The following lemma demonstrates how well-linkedness can be exploited for
low-congestion routing. We will use it repeatedly in the sequel.

Lemma 2.4. Let W be an α-well-linked subset of nodes, and let A,B be subsets of terminals in W
with equal sizes |A| = |B| = q. There is a 1-1 map σ : A → B such that each v ∈ A is connected
with a path to σ(v), and those paths create congestion at most 1/α with each other (meaning each
edge is used by at most 1/α paths), and they can be found efficiently.

Proof. We prove the lemma by solving standard Maximum Flow. Put capacity 1/α on each edge.
By the α-well-linkedness of the terminals in W , any cut in W with one side containing A and the
other containing B is crossed by at least αq edges, and hence its capacitated value is at least q.
Now add a new source-sink pair s∗, t∗ to W , connecting s∗ to each node in A and connecting t∗

to each node in B, with unit capacity edges. Noting that |A| = |B| = q, one can easily verify
that the capacitated value of the minimum s∗t∗-cut is at least q (details in footnote).4 By the
Min-Cut-Max-Flow theorem there is a flow with value q that we can find efficiently by solving
for the maximum flow, and recall we can assume w.l.o.g. it is intergal. The integrality means it
decomposes into q paths; the 1/α capacity constraints imply that each edge participates in at most
1/α of the paths; and the unit capacity constraints on the edges connecting s∗ to A and t∗ to B
imply that each node in A and in B participates in exactly one path. The paths induce the desired
map σ: it maps each v ∈ A to the unique node in B that is on the same path as v.

Lemma 2.4 is not directly applicable to our setting for two reasons: first it does not let us choose
the pairing σ (recall we have specified demand pairs in the input), and second, more importantly,

4Consider an s∗t∗-cut in which side s∗ contains only εq of the nodes in A, for some 0 ≤ ε ≤ 1. By α-well-linkedness
and the 1/α edge capacities, side s∗ sends εq capacity crossing the cut. Also s∗ sends (1 − ε)q unit-capacity edges
crossing the cut, and together the cut value is at least q. A symmetric argument applies to cuts that contain only a
subset of B. All other s∗t∗-cuts are covered by the argument given before adding s∗ and t∗ to the graph.

3

it requires α-well-linkedness with constant α in order to guarantee the constant congestion we are
after, while the terminals in our input graph may not be well-linked at all. Our next wish is to focus
on well-linked subsets of them, and we realize it with a divide-and-conquer approach: partition the
vertices to subsets V1, V2, . . . such that the terminals Ti in each subset Vi are well-linked, and
route the demand pairs in each Vi separately. The demand pairs lost in the partition, i.e. those
with endpoints in different V ′i s, are the “lost causes” that we will not even try to connect. This
procedure is called well-linked decomposition, and will be performed using the following theorem
due to Chekuri, Khanna and Shepherd [CKS04, CKS05].

Theorem 2.5. There is an efficient algorithm that given an instance of EDPwC, outputs a partition
of the nodes to subsets V1, V2, . . .

5 such that the terminals contained in each Vi are well-linked in
Vi, and the total number of demand pairs contained in the Vi’s (meaning not lost in the partition)
is Ω(k/ log2 k).

Recall that when we say well-linked in the theorem statement we mean α-well-linked with
α ≥ 1/poly log k (as remarked after Definition 2.3); the theorem is not strong enough to guarantee
constant α. Since we aim for a poly log k-approximation, the theorem’s guarantee that a 1/ log2 k-
fraction of the demand pairs survive the decomposition is acceptable for us. Theorem 2.5 is the
main result of [CKS05] and its proof is quite long, so again, we will just sketch the algorithm and
leave the analysis out of scope. For each demand pair si-ti denote by Pi the set of paths connecting
the pair, and P = ∪iPi. We set up the following linear program with a variable xp for each path
p in the graph, and a variable yi for each demand pair (si, ti). Recall that c is our target constant
congestion.

max

k∑
i=1

yi (LP1)

s.t.
∑

p∈P :e∈p
xp ≤ c ∀e ∈ E

∑
p∈Pi

xp ≥ yi ∀i = 1, . . . , k

0 ≤ xp ∀p ∈ Pi, i = 1, . . . , k

0 ≤ yi ≤ 1 ∀i = 1, . . . , k

Observe that if we take this as an integer program then it is an exact formulation of our EDPwC
problem: yi is an indicator for whether pair demand i is routed; xp is an indicator of whether path
p is used in the routing (there is no gain in setting it to more than 1); and the first set of constraints
are congestion constraints for each edge. The relaxation LP1 formulates a problem known as multi-
commodity flow. We interpret it as having k types of flow, where one unit of each type i wants to be
shipped from si to ti, and our goal is to ship as many types as possible under shared edge capacities
c.6 This is indeed a very natural relaxation of EDPwC. Much like the usual (single-commodity)
flow problem, LP1 can be reformulated in polynomial size by associating variables to edges instead
of to paths, and hence it can be solved efficiently.

5Partition means that the subsets are pairwise disjoint and their union equals V .
6Recalling that the multi-source multi-sink case of the usual Maximum Flow problem is reducible to the single-

source single-sink case (as we have done for example in the proof of Lemma 2.4), one may ask why is multi-commodity
different. The answer is that we do not gain anything from shipping more than a single unit of any given type.

4

The decomposition algorithm of Theorem 2.5 starts by solving LP1. The resulting total flow
on each edge interpreted as a measure of how globally important is the edge for our routing
task. It then proceeds to recursively solve the same LP, but with a different objective function:
max mini=1,...,k yi.

7 In words, we now aim to maximize the minimum flow of any type (whereas in
multi-commodity flow we could still do well even if some demand pair was shipping no flow at all).
This new problem is called maximum concurrent flow. Since it requires all the demand pairs to be
connected to some extent, we interpret it as a measure of terminal well-linkedness.

If the concurrent flow is small, the algorithm partitions the graph along a cut carrying just
a small amount of flow and recurses on the two sides. The recursion terminates on a subgraph
either when the multi-commodity flow (which was computed only once in the beginning) is small,
meaning the subgraph is not too important globally, or when the concurrent flow (computed on the
current subgraph) is large, meaning the terminals in the subgraph are well-linked. It now remains
to route demand pairs inside the resulting well-linked partition subsets, which is our task for the
next section.

3 Routing in Well-Linked Instances

By the preprocessing of the previous section, we assume from now on that the terminals T are
well-linked in our input graph G. As discussed above, well-linkedness roughly means that G is an
expander with respect to the terminals, but not necessarily in the full sense of Definition 2.1. We
therefore wish to explicitly identify in G an expander-like structure over the terminals, that we can
exploit in the fashion outlined in Section 2.1. We formalize this as embedding the expander in G.

Definition 3.1. Let H(T, F) be a graph on the terminal nodes T with an arbitrary edge set F .
Denote by P the set of all simple8 paths in the graph G. An embedding of H in G is a map
η : F → P that maps each edge t-t′ ∈ F to a path in G with endpoints t and t′.

Inspect Figure 1 for illustration. The graph H is embedded in G1: for example, the edge a-c in
H can be mapped to a path in G1 from a to c going through the two leftmost black nodes. It can
also be mapped to the longer path in G1 that passes through b. The graph H is embedded in G2

too: each edge in H can be mapped to a path in G2 that passes through the black node. In this
embedding, the paths share the same edges, and more precisely each edge is shared by 2 paths.

Using the notation of Definition 3.1, we define the η-congestion of an edge e in G as

cη(e) = |{f ∈ F : e ∈ η(f)}|,

the number of the paths going through e that participate in the embedding η. The congestion of
the embedding η is maxe∈E cη(e), the maximum congestion over the edges. In Figure 1, H embeds
into G1 with congestion 1, and embeds into G2 with congestion 2 but not 1.

Our plan is now to find an expander H embedded in G, route the demand pairs in H using
Theorem 2.2, and carry over the routing to G via the embedding. Since the routing on H will
be edge-disjoint (and even node-disjoint, which we recall is an added property of Theorem 2.2),
the congestion of the routing in G will be precisely the congestion of the embedding. Hence we
are looking for an expander embedding with constant congestion. To find one, we appeal to the
following attractive result.

7This can be formulated in LP by introducing a new variable y for the minimum.
8Recall that a path is simple if it never visits the same node twice.

5

Figure 1: Graph embedding illustration. White nodes are terminals, black are non-terminals.

3.1 Expander Embedding by the Cut-Matching Game

Khandekar, Rao and Vazirani [KRV09] described the following game of two players. They start
with a graph on k nodes and no edges, and gradually construct an expander. In each round, the
cut player chooses a cut (A,B) with equally sized sides |A| = |B| = 1

2k, and the matching player
answers with a perfect matching M of the two sides of the cut. The edges M are then added to the
graph. The game terminates when the graph becomes an expander. The goal of the cut player is
to minimize the number of rounds and the goal of the matching player is to maximize it. [KRV09]
proved the following theorem:

Theorem 3.2. The cut player has an efficient strategy that ends the game after O(log2 k), regard-
less of the choices of the matching player.

By strategy we mean a sequence of moves that the cut player can play, possibly depending
on previous moves of the matching player. By efficient strategy we mean that the cut player
can compute the next move of the winning strategy in polynomial time. We remark that as one
could expect, the winning strategy of the cut player is to find a cut violating Definition 2.1 and
completing the small side arbitrarily to make the cut equally sized. The cut is found by solving
standard Maximum Flow.

We now demonstrate how to embed an expander on the terminals into G and use it to solve
EDPwC. Set up a cut-matching game on the vertex set T and simulate the efficient cut player from
Theorem 3.2. It chooses a partition (A,B) of the terminals with equal sizes |A| = |B| = 1

2k. We
apply Lemma 2.4 to produce a perfect matching σ : A → B realized by paths in G that create
polylogarithmic congestion – say logb k – and return σ as the answer of the matching player. When
the game terminates it outputs an expander H on the vertex set T , on which we can solve EDP
with Theorem 2.2. Since by construction each edge in H corresponds to a path in G, we have an
embedding of H in G, and the routing on H translates to a routing on G. The congestion of this
routing is the congestion of the embedding, which is logb+2 k because the paths used in each round
created congestion logb k with each other, and we played for log2 k rounds.

This is insufficient since we are out for constant congestion. We will need to remedy both
of the failures: route each rounds with only constant congestion, and prevent congestion from
accumulating across the rounds.

3.2 Routers

Our improved expander embedding will rely on identifying subsets of non-terminal nodes in the
graph that have good internal connectivity and also good connectivity to the terminals. This should
be seen as our way of coping with the second hurdle mentioned in the beginning, of how to route

6

well-linked terminal pairs through the non-terminal nodes – and the answer is through these special
subsets. We call them routers and define them below. We use the following terminology: for a
subset S ⊂ V , the interface nodes are the nodes in S that have neighbors outside S, and we denote
them by int(S).9

Definition 3.3. A subset of nodes S ⊂ V is a router if (i) S contains no terminals, (ii) the
interface nodes of S are 1

2 -well-linked in it, (iii) there are k′ = k/poly log k edge-disjoint paths
connecting interface nodes of S to terminals in T , and these paths have disjoint endpoints. (This
means each path has an interface node of its own on one end and a terminal on its own on the
other end.)

(We remark that the actual definition of routers in [Chu12] is weaker but qualitatively similar,
and we use this version for clarity.) Note that in this definition we lose yet another poly log k
factor in the number of terminals, settling for k′. This is required because asking for part (iii) to
hold with k it too strong – we will not be able to find such good routers in G. In Section 3.4
we will deal with finding the routers and see where the loss is incurred. For the present section
and the next one we assume we have r pairwise-disjoint routers S1, . . . , Sr, where r = Θ(log2 k) is
the maximum number of rounds in the cut-matching game, and focus on using them to obtain a
constant-congestion expander embedding.

Each router is well connected to a subset of terminals, and the terminals are well connected
within themselves (namely they are well-linked). Therefore by transitivity the routers should be
well connected to each other, and this is formalized in the next lemma.

Lemma 3.4. For every pair Si, Sj of routers, there are k′/polylogk edge-disjoint and endpoint-
disjoint paths connecting interface nodes of Si to interface nodes of Sj.

Proof. By definition of routers we have a collection Pi of edge-disjoint and endpoint-disjoint paths
connecting nodes from int(Si) to a subset Ti of terminals. Similarly we have paths Pj and terminals
Tj , and |Ti| = |Tj | = k′. Since our goal in the current proof is to connect Si to Sj , we benefit from
intersection between Ti and Tj and therefore we consider now the worst case Ti ∩Tj = ∅. Recalling
that the terminals are α-well-linked with α ≥ 1/poly log k, we can apply Lemma 2.4 on Ti, Tj and
obtain k′ paths connecting them while creating congestion poly log k with each other. We interpret
these paths as a flow from Ti to Tj with value k′ under uniform capacities of poly log k. Here we
mean, similarly to the proof of Lemma 2.4, standard s∗t∗-flow with a super-source s∗ connected
to all the nodes in Ti and super-sink t∗ connected to all the nodes in Tj . Rescaling all capacities
to unit, we can ship k′/poly log k flow from Ti to Tj and assume w.l.o.g. it is integral, yielding
k′/poly log k edge-disjoint and endpoint-disjoint paths running between Ti and Tj (but no longer
covering all the terminals in Ti and Tj). Denote this collection of paths by Qij .

Take any path qij ∈ Qij , with endpoints ti ∈ Ti and tj ∈ Tj . Recall that ti (by definition of Ti)
is the endpoint of a unique path pi ∈ Pi, which has a unique other endpoint in int(Si). Similarly,
we have a unique pj ∈ Pj with one endpoint in tj and the other a unique endpoint in int(Sj).
Seaming the paths pi, qij , pj together gives a path from int(Si) to int(Sj). Performing this on each
path in Qij yields |Qij | = k′/poly log k edge disjoint and endpoint disjoint paths between int(Si)
and int(Sj), as needed.

We can now begin constructing the embedding. Let T1 denote the subset of k′ terminals that
are connected to the interface of the router S1 with disjoint paths, from part (iii) in Definition 3.3.
Label the terminals in T1 as t1, t2, . . . , tk′ . With each ti ∈ T1 we will associate a tree τi which is

9In other contexts they are frequently called boundary nodes.

7

Figure 2: Each router Sj has edge-disjoint endpoint-disjoint paths from some of its interface nodes
to a subset Tj of terminals. In red, an illustration of a tree τi associated with a terminal ti ∈ T1.
The tree is rooted in ti and has a leaf in each router interface. The path from ti to int(S1) is used
in many root-to-leaf paths, but within the same tree τi. We construct such tree for each terminal
in T1 and require that each edge is present in only a constant number of different trees, and that
the leaves of the trees are disjoint.

rooted in ti and has exactly r leaves, one in each router interface. Meaning, τi would have one
leaf in int(S1), one in int(S2), and so on until int(Sr). Each edge in G will participate in only a
constant number of trees {τi}, which we will leverage to achieve constant embedding congestion,
and the leaves of the trees will be disjoint.

This raises the question of how to connect the root ti with a leaf in, say, int(S2). We know how
to route ti to int(S1) (since ti ∈ T1 and by definition of T1), but Definition 3.3 might route int(S2)
to a subset T2 of terminals which is completely disjoint of T1, yielding no apparent path from ti to
int(S2). (We know that such a path exists since we naturally assume G is connected, but we need
a concrete path to reason about.) We resolve this using Lemma 3.4, which tells us that we can
route k′/poly log k edge-disjoint paths from int(S1) to int(S2). Since we can route ti to int(S1),
and int(S1) is 1

2 -well-linked in S1, we get a path from t1 to int(S2). We can repeat this argument
for every tree τi and router Sj , and see that we can indeed build each tree such that it has a leaf
in each router interface. See Figure 2 for clarification. (We emphasize that S2 was taken as an
example, and we apply the same argument to every Sj , but the initial choice of T1 and S1 is fixed.
That is, we associate trees only with the terminals in T1. It happens that we need to focus on an
arbitrary subset of k′ terminals – due to the loss in Definition 3.3 – and T1 is a choice as good as
any.)

However, we also need to trees the have small overlap, and more precisely to have each edge
of G participate in only a constant number of trees. The analysis achieving this requires lengthy
details, so again we suppress it and just present an intuition of why this should be possible. We
go by double-counting. First, we count the number of paths required for building all the trees: we
build k′ trees, and each one has r root-to-leaf paths (one leaf in each router), so together k′r paths
make up all the trees. Second, we count the number of paths available to us for the construction:
we have two types of paths,

Type I: Paths from router interfaces to terminals, which are given by part (iii) of Definition 3.3.
We have r routers and k′ such paths per router, so together k′r paths.

Type II: Paths between terminals, which are given by Lemma 2.4 (when invoked in the proof
of Lemma 3.4). We have k′/poly log k such paths between each pair Ti, Tj , so altogether
k′r2/poly log k paths.

8

Note that the proof of Lemma 3.4 constructs paths between router interfaces by concatenating
Type I paths (denoted Pi, Pj in the proof) and Type II paths (denoted Qij in the proof). From
the double counting, we see that we roughly k′r Type I paths and k′r2/poly log k Type II paths
available for the construction, and only k′r paths are needed. Hence the average number of time a
Type I path is required is 1, and the average number of times a Type II path is required is even
smaller, 1/poly log k. This coarse description overlooks many non-trivial parts of the argument,
and hides several constants, but the key takeaway is that it seems we have sufficiently many paths
to construct the trees that we need, and we have edge-disjointness guarantees on large subsets of
them (by Definition 3.3 and Lemma 3.4), so there is room for hope we can devise a construction
in which every edge is used in only a constant number of trees. And here we again choose to leave
further details out of scope.

3.3 Playing the Game

With the trees τ1, . . . , τk′ at our disposal we are ready to play against the cut player from Theo-
rem 3.2 (who is ourselves) and construct the expander embedding. Each τi has a leaf in each router
interface, and we think of that leaf as a representative of ti (the terminal associated to τi). So each
terminal in T1 has a representative in each router interface, and each node in the router interface
represents at most one terminal (since the trees have disjoint leaves).

The embedded expander will be on the vertex set T1 (and not on all the terminals T). In each
round of the game we will use a different router – by definition of r we have sufficiently many
routers for that purpose. In round j, the cut player queries a cut (X,T1 \ X) of T1 with equal
side sizes |X| = |T1 \ X| = 1

2k
′. Let A be the representatives of X in int(Sj), and let B be the

representatives of T1 \X in Sj . We thus have |A| = |B| = 1
2k
′. We apply Lemma 2.4 to produce a

perfect matching of A an B and answer with it to the cut player.
After r rounds we get an expander H on the nodes T1, and we route the demand pairs in it

by applying Theorem 2.2. Denote this routing on H by fH . We now show how fH embeds into
G with constant congestion. Let ta-tb be an edge used by fH , with endpoints ta, tb ∈ T1. This
edge was added to H because in some round j of the game, Lemma 2.4 matched their respective
representatives va, vb in int(Sj). We thus map the edge ta-tb in H to the path between ta and tb in
G which is the concatenation of the following three paths:

• the root-to-leaf path from ta to va in the tree τa;

• the path from va to vb inside Sj which was found by Lemma 2.4;

• the root-to-leaf path from tb to vb in the tree τb.

Let us analyze the congestion of this embedding. For brevity, we will refer to the root-to-leaf paths
(the first and third portions of the concatenation) as Type III paths, and to router internal paths
(the second portion of the concatenation) as Type IV paths. In each round of the game we use a
different router, and Lemma 2.4 guarantees that the paths within each router only create congestion
2 with eachother (recall that the interface nodes are 1

2 -well-linked in their router). Altogether, the
Type IV paths create congestion of only 2 with each other. The Type III paths may appear more
problematic, since they are not contained in routers and supposedly they can be used in several
rounds. However, here we exploit the crucial fact that Theorem 2.2 produces a node-disjoint routing
in H, and not just edge-disjoint. This means that in fH each terminal ti ∈ T has at most two
incident edges, so the embedding of fH into G uses at most two root-to-leaf paths from the tree τi.
To make this clearer, revisit Figure 2: the path from the root of the red tree into int(S1) appears

9

in many root-to-leaf paths, but fH uses at most two of them. In other words, each tree creates
only congestion 2 with itself.

Recalling that each edge in G belongs to only a constant number of trees, and seeing that we
use each tree at most twice to embed fH into G, we conclude that the Type III paths create only
constant congestion with eachother. Finally, the Type III paths may go through routers and thus
intersect Type IV paths, but this can only add 2 to the congestion on each edge. Rephrasing,
we have established that each edge has only a constant Type-III-congestion and only 2 Type-IV-
congestion, so the total congestion on the edge is at most their sum, a constant. This concludes the
congestion analysis of embedding fH into G, and it routes k′ = k/poly log k terminal pairs, which
is our desired approximation factor.

One point that may appear as a problem is that by routing only pairs inside T1 we inherently
assumed it contains demand pairs. What if all the terminals T1 are sources? Recall, however, that
the choice of T1 was arbitrary. We could instead choose a subset k′ terminals paired into demand
pairs; details omitted.

3.4 Finding a Family of Routers

To complete the presentation of the algorithm, it remains to show how to find routers S1, . . . , Sr.
To convey the main ideas we will only sketch how to find a single router. We will need to notion
of edge contraction.

Definition 3.5. Given graph G on n nodes with an edge e, the contraction of e is the operation of
merging its two endpoint into a single node, thus obtaining a modified graph G′ on n− 1 nodes.

Note that by iterative contractions we can contract many nodes, as long as they are connected,
into a single node. Intuitively this allows us to simplify the graph by suppressing portions of it that
are irrelevant to our current task.

In order to find a router in our input graph G we first remove all the terminals T (with their
incident edges), since a router is not allowed to contain any of them. The term “well-linked” will
refer throughout this section to well-linkedness with respect to the interface nodes. For a subset of
nodes S ⊂ V , we call the edges crossing from S to V \ S the boundary edges of S.

We describe an iterative process that stores in memory a graph H which is the result of con-
traction operations on G. We are only allowed to contract a subset S if it is well-linked, and has
only a few boundary edges, namely at most k/poly log k.

Initially we perform the well-linked decomposition from Theorem 2.5 (or more precisely, a
suitable variant) on G,10 and contract each partition subset into a node to obtain H. Then, in each
iteration, the number of edges in H strictly decreases. We do this as follows.

Let Hi be H in iteration i, and suppose it has m edges at that point. Choose a uniformly
random partition of H to equally sized subsets A,B. Each edge has probability 1

2 to cross the
partition, and hence with some constant probability, we get roughly (up to a constant) the same
number of edges contained in A as the number of edges on the boundary of A. For simplicity say
we have 1

2m edges inside A and 1
2m on its boundary, crossing to B. Recalling that each node on

the interface of A is incident to a boundary edge, we have |int(A)| ≤ 1
2m.

Un-contract all nodes in A, recovering the original nodes of G (only on side A). Apply on the un-
contracted A the well-linked decomposition from Theorem 2.5. Recall that currently we are dealing
with well-linkedness of the interface nodes, so the “terminals” in the well-linked decomposition
are the interface nodes int(A). Theorem 2.5 produces a partition of A into well-linked subsets

10This is where we lose the poly log k factor in part (iii) of Definition 3.3 – the loss is by Theorem 2.5.

10

A1, A2, . . ., and guarantees that the total number of edges crossing between them is at most 1
2m−

m/poly logm (recall they correspond to “lost” demand pairs). We now have two cases:

• Case 1: Some Aj has many boundary edges, more than k/poly log k. In this case we found a
subset Aj which is well-linked (by the decomposition), contains no terminals (since we priorly
removed them from G), and has many outgoing edges.

• Case 2: All Aj ’s have few boundary edges, at most k/poly log k. In this case we are allowed
to contract them, thus obtaining a new subset A′ and letting Hi+1 = A′ ∪B. We have shown
that A′ has strictly less (m/poly logm less) internal edges than A, and moreover A and A′

have exactly the same set of boundary edges, since contraction and un-contraction operations
do not effect the boundary. This implies that A′ has less edges than A, and hence Hi+1 has
less edges than Hi, as desired for iteration i.

Since the number of edges in H cannot decrease infinitely, Case 1 must occur after a finite number
of steps (polynomial in the size of G). We then have a subset Aj which we argue is a router. It has
some gaps from the requirements of Definition 3.3, which we now loosely describe how overcome.

(i) Aj needs to contain no terminals, which holds, since we have removed all of them from G before
running the algorithm to produce Aj .

(ii) Aj needs to be α-well-linked with α = 1
2 . The well-linked decomposition of Theorem 2.5 only

guarantees α ≥ 1/poly log k. This is the gap mentioned immediately after Definition 3.3: In
[Chu12], routers are in fact defined with α ≥ 1/poly log k, but the well-linkedness parameter
can then be “boosted” to 1

2 by routing more paths between interface nodes through the
terminals T (in a way very similar to Lemma 3.4, only from a router to itself instead of
between two routers). We omit details.

(iii) Aj needs to have good connectivity to the terminals (namely, k′ edge-disjoint and endpoint-
disjoint paths from int(Aj) to terminals). The above algorithm guarantees that Aj has
many boundary edges. The bridging argument can be sketched as follows: We can assume
w.l.o.g. that the edge set of G is inclusion-minimal for which the terminals T are well-linked
(otherwise remove edges from G until this holds). If Aj has many boundary edges but poor
connectivity to T , then intuitively not all of its boundary edges can be used to connect
terminals in T , and hence one of them can be removed without harming the well-linkedness
of T in G – a contradiction to minimality. This argument can be formalized to show that any
subset with many boundary edges has good connectivity to T .

This completes the description of how to find one router. Finding a family of r routers is done
using similar considerations, by partitioning H to r parts instead of 2 parts.

4 Conclusion

To conclude, we review how the pieces of the algorithm and its analysis (which may appear frag-
mented in our presentation) fit together.

The algorithm:

1. On the input graph, perform the well-linked decomposition from Theorem 2.5. From now
work on each well-linked subset of the partition as a separate instance.

11

2. In a well-linked instance, find a family of routers using Section 3.4.

3. Use the routers so find an embedded expander H in G, by simulating both the cut-player and
the matching-player, as described in Sections 3.2 and 3.3.

4. Find a routing on H using Theorem 2.2, and carry it over to G with constant congestion, as
analyzed in Section 3.3.

5. Return the union of the routings found on the portions of the well-linked decomposition from
Step 1.

Approximation guarantee: We start with k demand pairs, and need to make sure we route no
less than Ω(k/poly log k) demand pairs. We review the places where terminal loss was incurred:

• The initial well-linked decomposition from Step 1 already decreases the number of terminals
we are trying to route to O(k/poly log k).

• In order to find routers, we tolerate another poly log k loss (where we introduce k′ in their
definition).

• Theorem 2.2, which is invoked in Step 5 to find a routing on the embedded expander H, loses
yet another log k factor in the number of terminals.

Altogether we do remain with Ω(k/poly log k) demand pairs routed.

Congestion: The routing on H by Theorem 2.2 is without congestion. Embedding it into G
entails only constant congestion, as shown in Section 3.3.

Concluding remarks and subsequent work. The algorithm surveyed here is the main result of
[Chu12], building on previous work in [CKS05] and [RZ10]. The analysis in [Chu12] shows it achieves
congestion c = 14. Subsequently Chuzhoy and Li [CL12] sharpened the same techniques and
attained congestion c = 2, which is the best possible (recalling that the c = 1 case is NP-complete).
As another consequence, Chekuri and Ene [CE13] could obtain a polylogarithmic approximation
with constant congestion for the technically harder variant node-disjoint paths (NDP).

Notice that the starting point of the algorithm is Theorem 2.5, which starts by solving LP1.
Therefore the entire algorithm is in fact a (very involved) rounding procedure for LP1. The inte-
grality gap of this LP is known to be Ω(poly log n), which means that no rounding procedure for
this LP can achieve a better approximation factor. Hence this algorithm is optimal with respect
to LP1 up to the degree of the poly log k factor (and has the added value that the approximation
is w.r.t. k and not n).

Remarkably, the techniques presented here were found applicable to Graph-Minor Theory, a
framework known to yield deep graph-theoretic structural results with yet more algorithmic appli-
cations. Most notably, Chuzhoy and Chekuri [CC14] significantly improved the famous Grid-Minor
Theorem of Robertson and Seymour [RS86], proving the first polynomial lower-bound. The proof
relies on the tight relation between terminal well-linkedness and the notion of treewidth due to
Reed [Ree97], and on the fact that many parts of the algorithm presented here are remeniscent
of graph minors. Loosely speaking, the Grid-Minor Theorem requires finding a specific and much
more constrained type of graph embedding, but allows a much greater loss in the number of termi-
nals (the proof in [CC14] ends with about k1/98; compare this to the k/poly log k achieved here).
This result was intended to be surveyed here but this part is deprecated due to space limitations.

12

References

[CC14] Chandra Chekuri and Julia Chuzhoy, Polynomial bounds for the grid-minor theorem,
Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, 2014, pp. 60–69.

[CE13] Chandra Chekuri and Alina Ene, Poly-logarithmic approximation for maximum node dis-
joint paths with constant congestion, Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, 2013, pp. 326–341.

[Chu12] Julia Chuzhoy, Routing in undirected graphs with constant congestion, Proceedings of the
44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA,
May 19 - 22, 2012, 2012, pp. 855–874.

[CKS04] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd, The all-or-nothing multi-
commodity flow problem, Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, Chicago, IL, USA, June 13-16, 2004, 2004, pp. 156–165.

[CKS05] , Multicommodity flow, well-linked terminals, and routing problems, Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA,
May 22-24, 2005, 2005, pp. 183–192.

[CL12] Julia Chuzhoy and Shi Li, A polylogarithmic approximation algorithm for edge-disjoint
paths with congestion 2, 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, 2012, pp. 233–242.

[Fri00] Alan M. Frieze, Edge-disjoint paths in expander graphs, SIAM J. Comput. 30 (2000),
no. 6, 1790–1801.

[KRV09] Rohit Khandekar, Satish Rao, and Umesh V. Vazirani, Graph partitioning using single
commodity flows, J. ACM 56 (2009), no. 4.

[Ree97] Bruce A. Reed, Tree width and tangles: A new connectivity measure and some applica-
tions, Surveys in Combinatorics (1997), 87–162.

[RS86] Neil Robertson and P D Seymour, Graph minors. v. excluding a planar graph, J. Comb.
Theory Ser. B 41 (1986), no. 1, 92–114.

[RT87] Prabhakar Raghavan and Clark D. Thompson, Randomized rounding: a technique for
provably good algorithms and algorithmic proofs, Combinatorica 7 (1987), no. 4, 365–374.

[RZ10] Satish Rao and Shuheng Zhou, Edge disjoint paths in moderately connected graphs, SIAM
J. Comput. 39 (2010), no. 5, 1856–1887.

13

	Introduction
	Setting and Notation

	Preprocessing
	Routing on Expanders
	Well-Linkedness

	Routing in Well-Linked Instances
	Expander Embedding by the Cut-Matching Game
	Routers
	Playing the Game
	Finding a Family of Routers

	Conclusion

