This material takes about 1.5 hours.

1 Suffix Trees

Gusfield: Algorithms on Strings, Trees, and Sequences.

Weiner 73 “Linear Pattern-matching algorithms” IEEE conference on automata
and switching theory

McCreight 76 “A space-economical suffix tree construction algorithm” JACM
23(2) 1976

Chen and Seifras 85 “Efficient and Elegegant Suffix tree construction” in Apos-
tolico/Galil Combninatorial Algorithms on Words

Another “search” structure, dedicated to strings.

Basic problem: match a “pattern” (of length m) to “text” (of length n)

e goal: decide if a given string (“pattern”) is a substring of the text

e possibly created by concatenating short ones, eg newspaper

e application in IR, also computational bio (DNA seqs)

e if pattern avilable first, can build DFA, run in time linear in text

e if text available first, can build suffix tree, run in time linear in pattern.
e applications in computational bio.

First idea: binary tree on strings. Inefficient because run over pattern many
times.

e fractional cascading?
e realize only need one character at each nodel!
Tries:
e used to store dictionary of strings
e trees with children indexed by “alphabet”
e time to search equal length of query string
e insertion ditto.
e optimal, since even hashing requires this time to hash.
e but better, because no “hash function” computed.
e space an issue:

— using array increases stroage cost by |3

— using binary tree on alphabet increases search time by log|X|

— ok for “const alphabet”

— if really fussy, could use hash-table at each node.

e size in worst case: sum of word lengths (so pretty much solves “dictionary”
problem.

But what about substrings?
e Relevance to DNA searches
e idea: trie of all n? substrings
e equivalent to trie of all n suffixes.

e put “marker” at end, so no suffix contained in other (otherwise, some
suffix can be an internal node, “hidden” by piece of other suffix)

e means one leaf per suffix
e Naive construction: insert each suffix
e basic alg:

— text a1 ---ap,
— define s; = a; -+ - a,
—fori=1ton

— insert s;
e time, space O(n?)
Better construction:
e note trie size may be much smaller: aaaaaaa.
e algorithm with time O(|T)
e idea: avoid repeated work by “memoizing”
e also shades of finger search tree idea—use locality of reference
e suppose just inserted aw
e next insert is w
e big prefix of w might already be in trie
e avoid traversing: skip to end of prefix.
Suffix links:
e any node in trie corresponds to string

e arrange for node corresp to ax to point at node corresp to z

e suppose just inserted aw.

e walk up tree till find suffix link

e follow link (puts you on path corresp to w)

e walk down tree (adding nodes) to insert rest of w
Memoizing: (save your work)

e can add suffix link to every node we walked up

(since walked up end of aw, and are putting in w now).

e charging scheme: charge traversal up a node to creation of suffix link

traversal up also covers (same length) traversal down

e once node has suffix link, never passed up again

e thus, total time spent going up/down equals number of suffix links
e one suffix link per node, so time O(|T)

half hour up to here.
Amortization key principles:

e Lazy: don’t work till you must
e If you must work, use your work to “simplify” data structure too
e force user to spend lots of time to make you work

e use charges to keep track of work—earn money from user activity, spend
it to pay for excess work at certain times.

Linear-size structure:
e problem: maybe |T| is large (n?)
e compress paths in suffix trie
e path on letters a; - - - a; corresp to substring of text
e replace by edge labelled by (7, j) (implicit nodes)
e Example: tree on abab$
e gives tree where every node has indegree at least 2
e in such a tree, size is order number of leaves = O(n)
e terminating $ char now very useful, since means each suffix is a node

e Wait: didn’t save space; still need to store characters on edge!

e see if someone with prompting can figure out: characters on edge
are substring of pattern, so just store start and end indices. Look in text
to see characters.

Search still works:

e preserves invariant: at most one edge starting with given character leaves
a node

e so can store edges in array indexed by first character of edge.
e walk down same as trie
e called “slowfind” for later
Construction:
e obvious: build suffix trie, compress
e drawback: may take n? time and intermediate space
e better: use original construction idea, work in compressed domain.
e as before, insert suffixes in order sq,..., s,
e compressed tree of what inserted so far
e to insert s;, walk down tree
e at some point, path diverges from what’s in tree
e may force us to “break” an edge (show)
e tack on one new edge for rest of string (cheap!)
MacReight 1976

e use suffix link idea of up-link-down

problem: can’t suffix link every character, only explict nodes

e want to work proportional to real nodes traversed

need to skip characters inside edges (since can’t pay for them)

introduced “fastfind”

idea: fast alg for descending tree if know string present in tree

— just check first char on edge, then skip number of chars equal to edge
“length”

may land you in middle of edge (specified offset)

cost of search: number of explicit nodes in path

amortize: pay for with explicit-node suffix links

Amortized Analysis:

e suppose just inserted string aw

sitting on its leaf, which has parent

Parent is only node that was (possibly) created by insertion:

As soon as walk down preexisting tree falls off tree, create parent
node and stop

invariant: every internal node except for parent of current leaf has suffix
link to another explicit node

plausible?

i.e., is there an explicit node for that suffix link to point at?
suppose v was created as parent of s; leaf when it diverged from sy,
(note this is only way nodes get created)

claim sj4q1 and sg41 diverge at suffix(v), creating another explicit
node.

only problem if s;41 not yet present
happens only if k£ is current suffix

only blocks parent of current leaf.

e insertion step:

suppose just inserted s;

consider parent p; and grandparent (parent of parent) g; of current
node

g; to p; link has string w;

p; to s; link wq

go up to grandparent

follow suffix link (exists by invariant)
fastfind wy

claim: know w; is present in tree!

x p; was created by s; split from a previous edge (or preexisted)
* 80 aww; was in tree before s; inserted (prefix of earlier suffix)

* S0 wwi is in tree after s; inserted
create suffix link from p; (preserves invariant)
slowfind wo (stopping when leave current tree)

break current edge if necessary (may land on preexisting node)

— add new edge for rest of wy
Analysis:
e First, consider work to reach ¢;+1 (not suf(g;))
— Mix of fastfind and slowfind, but no worse then cost of doing pure
slowfind

— This is it most |g;+1| — |¢:| + 1 (explain length notation)

— So total is O3 |gi+1] — |gi| + 1) = O(n)

— Wait: maybe g;41 — ¢; + 1 < 0, and I am cheating on sum?
x Consider after inserting s;11 =suf(s;)
* then p; can’t point at s;41
* so must point at ancestor
* 80 ¢g; must point at ancestor of ancestor
* i.e., g; points at g;41 or something higher
* 80 |giv1] = [gi —1

e Remaining cost: to reach p;+1 (possibly implicit) from g;41.

If get there during fastfind, costs at most one additional step from
Ji+1
— If get there during slowfind, means fastfind stopped at or before g; 1.

So suf(p;) is not below g;11.

So remaining cost (from g; 1, not suf(p;)) is
|9it1| = |pisa| < [suf(pi)] — [pia| < |pil = [pisal +1

— telescopes as before to O(n)

— we mostly analyzed as if used slowfind. when was fastfind important?

*

in case when p;;1 was reached on fastfind step from g;41

ie, piy1 =suf(p;)

in that case, could not have afforded to do slowfind from g¢; 1 to
Pit+1

since slowfind analysis only covered fslowfind to g;1+1 and from
Pit1

* however, don’t know that the case occurred until after the fact.

*

*

*

Weiner algorithm: insert strings “backwards”, use prefix links.
Ukonnen online version.
Suffix arrays: many of same benefits as suffix trees, but save pointers:

e lexicographic ordering of suffixes

e represent as list of integers: by is (index in text of) lexicographically first
suffix, bs is (index of) lexicographically second, etc.

e search for pattern via binary search on this sequence

e some clever tricks (and some more space) let you avoid re-checking char-
acters of pattern.

e So linear search (with additive logm for binary search.

e space usage: 3m integers (as opposed to numerous pointers and integers
of suffix tree).

Applications:
e preprocess bottom up, storing first, last, num. of suffixes in subtree
e allows to answer queries: what first, last, count of w in text in time O(|w]).

e enumerate k occurrences in time O(w + |k|) (traverse subtree, binary so
size order of number of occurences (compare to rabin-karp).

e longest common subsequence is probably on homework.

