
This material takes about 1.5 hours.

1 Suffix Trees

Gusfield: Algorithms on Strings, Trees, and Sequences.
Weiner 73 “Linear Pattern-matching algorithms” IEEE conference on automata
and switching theory
McCreight 76 “A space-economical suffix tree construction algorithm” JACM
23(2) 1976
Chen and Seifras 85 “Efficient and Elegegant Suffix tree construction” in Apos-
tolico/Galil Combninatorial Algorithms on Words
Another “search” structure, dedicated to strings.
Basic problem: match a “pattern” (of length m) to “text” (of length n)

• goal: decide if a given string (“pattern”) is a substring of the text

• possibly created by concatenating short ones, eg newspaper

• application in IR, also computational bio (DNA seqs)

• if pattern avilable first, can build DFA, run in time linear in text

• if text available first, can build suffix tree, run in time linear in pattern.

• applications in computational bio.

First idea: binary tree on strings. Inefficient because run over pattern many
times.

• fractional cascading?

• realize only need one character at each node!

Tries:

• used to store dictionary of strings

• trees with children indexed by “alphabet”

• time to search equal length of query string

• insertion ditto.

• optimal, since even hashing requires this time to hash.

• but better, because no “hash function” computed.

• space an issue:

– using array increases stroage cost by |Σ|
– using binary tree on alphabet increases search time by log |Σ|

1

– ok for “const alphabet”

– if really fussy, could use hash-table at each node.

• size in worst case: sum of word lengths (so pretty much solves “dictionary”
problem.

But what about substrings?

• Relevance to DNA searches

• idea: trie of all n2 substrings

• equivalent to trie of all n suffixes.

• put “marker” at end, so no suffix contained in other (otherwise, some
suffix can be an internal node, “hidden” by piece of other suffix)

• means one leaf per suffix

• Naive construction: insert each suffix

• basic alg:

– text a1 · · · an

– define si = ai · · · an

– for i = 1 to n

– insert si

• time, space O(n2)

Better construction:

• note trie size may be much smaller: aaaaaaa.

• algorithm with time O(|T |)

• idea: avoid repeated work by “memoizing”

• also shades of finger search tree idea—use locality of reference

• suppose just inserted aw

• next insert is w

• big prefix of w might already be in trie

• avoid traversing: skip to end of prefix.

Suffix links:

• any node in trie corresponds to string

• arrange for node corresp to ax to point at node corresp to x

2

• suppose just inserted aw.

• walk up tree till find suffix link

• follow link (puts you on path corresp to w)

• walk down tree (adding nodes) to insert rest of w

Memoizing: (save your work)

• can add suffix link to every node we walked up

• (since walked up end of aw, and are putting in w now).

• charging scheme: charge traversal up a node to creation of suffix link

• traversal up also covers (same length) traversal down

• once node has suffix link, never passed up again

• thus, total time spent going up/down equals number of suffix links

• one suffix link per node, so time O(|T |)

half hour up to here.
Amortization key principles:

• Lazy: don’t work till you must

• If you must work, use your work to “simplify” data structure too

• force user to spend lots of time to make you work

• use charges to keep track of work—earn money from user activity, spend
it to pay for excess work at certain times.

Linear-size structure:

• problem: maybe |T | is large (n2)

• compress paths in suffix trie

• path on letters ai · · · aj corresp to substring of text

• replace by edge labelled by (i, j) (implicit nodes)

• Example: tree on abab$

• gives tree where every node has indegree at least 2

• in such a tree, size is order number of leaves = O(n)

• terminating $ char now very useful, since means each suffix is a node

• Wait: didn’t save space; still need to store characters on edge!

3

• see if someone with prompting can figure out: characters on edge
are substring of pattern, so just store start and end indices. Look in text
to see characters.

Search still works:

• preserves invariant: at most one edge starting with given character leaves
a node

• so can store edges in array indexed by first character of edge.

• walk down same as trie

• called “slowfind” for later

Construction:

• obvious: build suffix trie, compress

• drawback: may take n2 time and intermediate space

• better: use original construction idea, work in compressed domain.

• as before, insert suffixes in order s1, . . . , sn

• compressed tree of what inserted so far

• to insert si, walk down tree

• at some point, path diverges from what’s in tree

• may force us to “break” an edge (show)

• tack on one new edge for rest of string (cheap!)

MacReight 1976

• use suffix link idea of up-link-down

• problem: can’t suffix link every character, only explict nodes

• want to work proportional to real nodes traversed

• need to skip characters inside edges (since can’t pay for them)

• introduced “fastfind”

– idea: fast alg for descending tree if know string present in tree

– just check first char on edge, then skip number of chars equal to edge
“length”

– may land you in middle of edge (specified offset)

– cost of search: number of explicit nodes in path

4

– amortize: pay for with explicit-node suffix links

Amortized Analysis:

• suppose just inserted string aw

• sitting on its leaf, which has parent

• Parent is only node that was (possibly) created by insertion:

– As soon as walk down preexisting tree falls off tree, create parent
node and stop

• invariant: every internal node except for parent of current leaf has suffix
link to another explicit node

• plausible?

– i.e., is there an explicit node for that suffix link to point at?

– suppose v was created as parent of sj leaf when it diverged from sk

– (note this is only way nodes get created)

– claim sj+1 and sk+1 diverge at suffix(v), creating another explicit
node.

– only problem if sk+1 not yet present

– happens only if k is current suffix

– only blocks parent of current leaf.

• insertion step:

– suppose just inserted si

– consider parent pi and grandparent (parent of parent) gi of current
node

– gi to pi link has string w1

– pi to si link w2

– go up to grandparent

– follow suffix link (exists by invariant)

– fastfind w1

– claim: know w1 is present in tree!

∗ pi was created by si split from a previous edge (or preexisted)
∗ so aww1 was in tree before si inserted (prefix of earlier suffix)
∗ so ww1 is in tree after si inserted

– create suffix link from pi (preserves invariant)

– slowfind w2 (stopping when leave current tree)

– break current edge if necessary (may land on preexisting node)

5

– add new edge for rest of w2

Analysis:

• First, consider work to reach gi+1 (not suf(gi))

– Mix of fastfind and slowfind, but no worse then cost of doing pure
slowfind

– This is it most |gi+1| − |gi|+ 1 (explain length notation)

– So total is O(
∑

|gi+1| − |gi|+ 1) = O(n)

– Wait: maybe gi+1 − gi + 1 < 0, and I am cheating on sum?

∗ Consider after inserting si+1 =suf(si)
∗ then pi can’t point at si+1

∗ so must point at ancestor
∗ so gi must point at ancestor of ancestor
∗ i.e., gi points at gi+1 or something higher
∗ so |gi+1| ≥ |gi| − 1

• Remaining cost: to reach pi+1 (possibly implicit) from gi+1.

– If get there during fastfind, costs at most one additional step from
gi+1

– If get there during slowfind, means fastfind stopped at or before gi+1.

– So suf(pi) is not below gi+1.

– So remaining cost (from gi+1, not suf(pi)) is

|gi+1| − |pi+1| ≤ |suf(pi)| − |pi+1| ≤ |pi| − |pi+1|+ 1

– telescopes as before to O(n)

– we mostly analyzed as if used slowfind. when was fastfind important?

∗ in case when pi+1 was reached on fastfind step from gi+1

∗ ie, pi+1 =suf(pi)
∗ in that case, could not have afforded to do slowfind from gi+1 to

pi+1

∗ since slowfind analysis only covered fslowfind to gi+1 and from
pi+1

∗ however, don’t know that the case occurred until after the fact.

Weiner algorithm: insert strings “backwards”, use prefix links.
Ukonnen online version.
Suffix arrays: many of same benefits as suffix trees, but save pointers:

• lexicographic ordering of suffixes

6

• represent as list of integers: b1 is (index in text of) lexicographically first
suffix, b2 is (index of) lexicographically second, etc.

• search for pattern via binary search on this sequence

• some clever tricks (and some more space) let you avoid re-checking char-
acters of pattern.

• So linear search (with additive log m for binary search.

• space usage: 3m integers (as opposed to numerous pointers and integers
of suffix tree).

Applications:

• preprocess bottom up, storing first, last, num. of suffixes in subtree

• allows to answer queries: what first, last, count of w in text in time O(|w|).

• enumerate k occurrences in time O(w + |k|) (traverse subtree, binary so
size order of number of occurences (compare to rabin-karp).

• longest common subsequence is probably on homework.

7

