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Randomized Approximation Algorithms

13.1 MAX-CUT

Consider the MAX-CUT problem, in which we are given a graph G = (V, E) and wish to partition
it into two parts so as to mazimize the number of edges between the two parts. Previously, we
showed that a greedy algorithm that iteratively considers each vertex and places it on the side with
the fewest of its neighbours is a 2-approximation. We show here an alternate construction using
randomization to achieve the same bound.

The algorithm is as follows. For each vertex, randomly assign it to one side or the other. To analyze
this algorithm, we consider the expected number of edges cut, which equals

Z Pr(e cut) = Z 1/2=m/2.
ecE ecE

Thus at least half the edges are cut on average, and we have a randomized 2-approximation.

13.2 MAX-SAT

Consider a Boolean formula in conjunctive normal form (CNF), namely a formula expressed as the
AND of a set of clauses, each of which is the OR of a set of literals, each of which is either a variable
or the negation of a variable.

The satisfiability problem (SAT) is to determine whether or not a variable assignment exists that
makes the formula true. This is one of the canonical NP-complete problems.

The mazimum satisfiability problem (MAX-SAT) is to find a variable assignment that maximizes
the number of true clauses.

One common variant of satisfiability is kSAT, in which each clause is restricted to be the OR of k
literals, for fixed k. There is a straightforward polynomial time algorithm for 25AT, but 3SAT is
NP-complete.

We may similarly define MAX-ESAT to be MAX-SAT restricted to those formulas containing only
clauses of size k. It turns out, however, that even MAX-2SAT is NP complete. We consider here, the
approximation algorithm for MAX-3SAT consisting of making each variable true or false at random.
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We have
E[number of clauses satisfied] = Z Pr (c is satisfied) (13.1)
clause ¢
= 7/8(number of clauses), (13.2)

implying that we have an 8/7-approximation algorithm.

Note that a slight generalization of the above result implies a
MAX-ESAT, which implies a 2-approximation for MAX-SAT.

ﬁ—approximation algorithm for

We also note that it has been shown that the 8/7 approximation ration for MAX-3SAT is optimal
unless P=NP.

13.3 LP relaxation of MAX-SAT

Consider the following integer linear program (ILP). Let binary variable z; be 1 iff clause ¢; is
satisfied. Let binary variable y; be 1 iff variable i is true. Let cj denote the set of variables appearing
non-negated in clause ¢;, and let ¢; denote those variables that are negated. The problem is as
follows:

maszj such that Vj, Z yi + Z(l —y) >2;,0<2;<1,0<y; <L

.+ .
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It is fairly clear that this expresses the MAX-SAT problem if the variables are restricted to be
integral. We consider the LP that results from relaxing this restriction.

We note that the solution we get in the relaxed problem may have fractional values for the variables
y;. Since these variables are meant to represent whether the variables z; in the Boolean formula are
true or not, we may have difficulty interpreting the LP solution as a variable assignment.

We introduce the technique of randomized rounding, a technique applicable to ILPs in general.

Given possibly fractional solutions y;, randomized rounding sets x; = 1 with probability y;, and
z; = 0 with probability 1 — y;.

We note that a trivial consequence of this is that

We now work to estimate the probability that a given clause is satisfied. From the constraints on
the LP, we know that the expected number of satisfied variables in a clause ¢; is at least z;. Define

a sequence [ by
1 3 1
=1-(1-)=@1,2,~.704,... > 1 - = ~ .632).
/Bk ( k) (743 ) e )

Claim 1 Given a clause c; of k variables, the probability that it is satisfied is ot least Bz;.
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Proof: To simplify the argument, we assume that all literals are positive (non-negated). We note
that the probability that c; is satisfied is the complement of the probability that none of its variables

is true, which is
T -v).

i€cj

We note that the y;s are constrained by
Z Yi 2 2j.
i€cj

Thus appealing to inequality tricks (Jensen’s inequality and the fact that the logarithm function is
convex) we conclude that this probability is minimized when

Yi :Zj/k.

Thus we can lower bound the probability of ¢; being satisfied by

2
1-(1- ?J)k > Brzj,

as desired. l

_e _
e—1

sequence [y, is always at least 1 — %, the expected number of satisfied clauses is at least (1 — %) > 24,
which is thus within (1 — 1) factor of optimal since the solution to the relaxed problem ) z; is at
least as good as the solution to the ILP.

We now observe that this claim implies that this algorithm is a 1_—11/6 = approximation: since the

13.4 Combined algorithm

We introduce a third algorithm to approximate MAX-SAT that consists of running the previous
two algorithms and picking the solution that maximizes the number of satisfied clauses. While
randomized rounding provides a solution at least half as good as OPT, and LP relaxation provides
a solution within 1 — % factor, the combined algorithm will provide a solution within 3/4 of optimal.

We note that the above algorithm performs at least as well as the algorithm where we pick randomly
between the two choices suggested by randomized rounding and LP relaxation. Letting k; denote
the number of variables in clause j, we have that the expected number of variables satisfied in the
random solution is at least

S =28+ )z | =3 S+ By =27 2 532
J J

J J

Thus this is a 4/3-approximation, as desired.
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13.5 Set Cover

As before, in the set cover problem we are given sets S; containing elements in {1...n} and asked to
find the minimum number of sets such that their union “covers” all the elements. We have already
seen a greedy algorithm that produces an O(logn)-approximation. We present an LP relaxation
algorithm that also provides an O(logn)-approximation.

Consider the following ILP. Let y; = 1 iff S; is in the cover. Find

minz yi, such that (13.3)
S yi>1 (13.4)
Sidj
0<y<1. (13.5)

Observe that when y; is restricted to be integral this captures the set cover problem. Now consider
the result of optimizing the LP relaxation. If we try the above randomized rounding technique of
putting set S; in our cover with probability y;, then we end up with the expected number of sets
covering any point j to be 1. However, the set cover problem requires that all sets be covered, which
is a considerably stronger statement. Thus regular randomized rounding might fail to give a solution
to set cover.

We remedy this problem by modifying the randomized rounding scheme as follows: for some fixed
a > 1, choose set S; with probability ay;. Note that the expected number of sets chosen is now
aY y; < a|OPT|, so that we will have an a-approximation if the sets actually do cover 1...n.

In order to show that the chosen sets do provide a cover with high probability, we introduce the
Chernoff bound, another fundamental technique in the probabilistic method.

Theorem 1 (Chernoff Bound) Let X = X; + ... + X, be a sum of indicator (0-1) variables that
are independent. Denote E[X] by u. Then

Pr(X < (1—e)p) < e r2,
And if e < 2e — 1, then
2
Pr(X > (1+€u) <e /1,

while if € > 2e — 1, then
Pr(X > (1+€e)p) < e +on

To apply this theorem, we note that the number of sets covering an element j is the sum of inde-
pendently random indicator variables, with mean «. We need to bound the probability that this
random variable is 0. We apply the Chernoff bound with ¢ = 1, which states that the probability
that no set covers j is at most

efegu/2 — efa/2_
Applying the union bound, we have that the probability that any element is uncovered is at most

ne=/2,

Setting o = 3log, n, this probability becomes at most 1/4/n <« 1. Thus we have a Monte Carlo
O(logn) approximation, as desired.



