
This material takes 1:05.

Hashing

Dictionaries

• Operations.

– makeset, insert, delete, find

Model

• keys are integers in M = {1, . . . ,m}

• (so assume machine word size, or “unit time,” is log m)

• can store in array of size M

• using power: arithmetic, indirect addressing

• compare to comparison and pointer based sorting, binary trees

• problem: space.

Hashing:

• find function h mapping M into table of size n � m

• Note some items get mapped to same place: “collision”

• use linked list etc.

• search, insert cost equals size of linked list

• goal: keep linked lists small: few collisions

Hash families:

• problem: for any hash function, some bad input (if n items, then m/n items to same
bucket)

• This true even if hash is e.g. SHA1

• Solution: build family of functions, choose one that works well

Set of all functions?

• Idea: choose “function” that stores items in sorted order without collisions

• problem: to evaluate function, must examine all data

• evaluation time Ω(log n).

1



• “description size” Ω(n log m),

• Better goal: choose function that can be evaluated in constant time without looking
at data (except query key)

How about a random function?

• set S of s items

• If s = n, balls in bins

– O((log n)/(log log n)) collisions w.h.p.

– And matches that somewhere

– but we care more about average collisions over many operations

– Cij = 1 if i, j collide

– Time to find i is
∑

j Cij

– expected value (n− 1)/n ≤ 1

• more generally expected search time for item (present or not): O(s/n) = O(1) if s = n

Problem:

• nm functions (specify one of n places for each of n items)

– too much space to specify (m log n),

– hard to evaluate

• for O(1) search time, need to identify function in O(1) time.

– so function description must fit in O(1) machine words

– Assuming log m bit words

– So, fixed number of cells can only distinguish poly(m) functions

• This bounds size of hash family we can choose from

Our analysis:

• sloppier constants

• but more intuitive than book

2-universal family: [Carter-Wegman]

• Key insight: don’t need entirely random function

• All we care about is which pairs of items collide

• so: OK if items land pairwise independent

2



• pick p in range m, . . . , 2m (not random)

• pick random a, b

• map x to (ax + b mod p) mod n

– pairwise independent, uniform before mod n

– So pairwise independent, near-uniform after mod n

– at most 2 “uniform buckets” to same place

• argument above holds: O(1) expected search time.

• represent with two O(log m)-bit integers: hash family of poly size.

• max load may be large is
√

n, but who cares?

– expected load in a bin is 1

– so O(
√

n) with prob. 1-1/n (chebyshev).

– this bounds expected max-load

– some item may have bad load, but unlikely to be the requested one

– can show the max load is probably achieved for some 2-universal families

perfect hash families

Ideally, would hash with no collisions

• Explore case of fixed set of n items (read only)

• perfect hash function: no collisions

• Even fully random function of n to n has collisions

Alternative try: use more space:

• How big can s be for random s to n without collisions?

– Expected number of collisions is E[
∑

Cij] =
(

s
2

)
(1/n) ≈ s2/2n

– Markov Inequality: s =
√

n works with prob. 1/2

– Nonzero probability, so, 2-universal hashes can work in quadratic space.

• Is this best possible?

– Birthday problem: (1− 1/n) · · · (1− s/n) ≈ e−(1/n+2/n+···+s/n) ≈ e−s2/2n

– So, when s =
√

n has Ω(1) chance of collision

– 23 for birthdays

– even for fully independent

3



Finding one

• We know one exists—how find it?

• Try till succeed

• Each time, succeed with probability 1/2

• Expected number of tries to succeed is 2

• Probability need k tries is 2−k

Two level hashing for linear space

• Hash s items into O(s) space 2-universally

• Build quadratic size hash table on contents of each bucket

• bound
∑

b2
k =

∑
k(

∑
i[i ∈ bk])

2 =
∑

Ci + Cij

• expected value O(s).

• So try till get (markov)

• Then build collision-free quadratic tables inside

• Try till get

• Polynomial time in s, Las-vegas algorithm

• Easy: 6s cells

• Hard: s + o(s) cells (bit fiddling)

Define las vegas, compare to monte carlo.
Derandomization

• Probability 1/2 top-level function works

• Only m2 top-level functions

• Try them all!

• Polynomial in m (not n), deterministic algorithm

4


