6.852 Lecture 9

- Lower bound on leader election
- Basic asynchronous network algorithms
 - constructing a spanning tree
 - breadth-first search
 - shortest paths
 - minimum spanning tree
- Reading: Chapter 15 (continued)
- Next lecture: Chapter 16.

Last lecture

- Finished defining formal model
- Leader election algorithm for asynchronous networks
- Described lower bound for leader election

Leader election in a ring

- Lower bound in asynchronous network if n is unknown
 - Key: "assemble" ring from pieces which delay communication
 - silent state: no more messages will be sent without input
 - ring looks like "line" if communication delayed across ends
 - some lines may send $\Omega(n \log n)$ msgs before becoming silent
 - connect ends of such a line to make a ring
 - delay communication across ends of line

- C(α) = number of messages sent in α
- C(A) = sup{ C(α) | α is an input-free execution of A }
- Lemma 1: If L₁, L₂, L₃ are three line graphs of length I such that C(L_i) ≥ k for all i then C(L_i join L_j) ≥ 2k + I/2 for some i ≠ j

- Suppose not. Consider three rings:

- Let α_i be finite execution of L_i with \geq k msgs.
- Run α_1 then α_2 then $\alpha_{1,2}$, with msgs across boundary
 - since fewer than I/2 add'I msgs, middles of $L_1 \& L_2$ still silent
 - not enough msgs to reach them

- Let α_i be finite execution of L_i with \geq k msgs.
- Run α_1 then α_2 then $\alpha_{1,2}$, with msgs across boundary
- since fewer than I/2 add'I msgs, middles of $L_1 \& L_2$ still no input
- not enough msgs to reach them
- Similarly for $\alpha_{2,1}$.
- no interference between $\alpha_{1,2}$ and $\alpha_{2,1}$

- Connect both ends into ring
 - left neighbor is clockwise around ring
- Run α_1 then α_2 then $\alpha_{1,2}$ then $\alpha_{2,1}$.
 - must be silent in final state
 - must elect leader (possibly in extension, but no more msgs)
- Assume WLOG that elected leader is in "bottom half"
 - can't be midpoint of either L_1 or L_2

- Same argument for ring(L₂ join L₃)
 - Can leader be in bottom half?

- Same argument for ring(L₂ join L₃)
 - Can leader be in bottom half? No!
 - so must be in top half

• Lemma 2: There are an infinite number of processes that can send a message before receiving any.

- Lemma 1: If L_1 , L_2 , L_3 are three line graphs of length I such that $C(L_i) \ge k$ for all i, then $C(L_i \text{ join } L_j) \ge 2k + 1/2$ for some i $\neq j$.
- Lemma 2: There are an infinite number of processes that can send a message before receiving any.
- Lemma 3: For any $r \ge 0$, there are infinitely many disjoint line graphs L of length 2^r such that $C(L) \ge r 2^{r-2}$.
 - base case (r = 0): Trivial.
 - base case (r = 1): Use Lemma 1.
 - inductive case ($r \ge 2$):
 - Choose L_1 , L_2 , L_3 of length 2^{r-1} with $C(L_i) \ge (r-1) 2^{r-3}$.
 - By Lemma 2, for some i,j, $C(L_i \text{ join } L_j) \ge 2(r-1)2^{r-3} + 2^{r-1}/2 = r 2^{r-2}$.

- Lemma 3: For any r ≥ 0, there are infinitely many disjoint line graphs L of length 2^r such that C(L) ≥ r 2^{r-2}.
- Theorem: For any r ≥ 0, there is a ring R of size n = 2^r such that C(R) = Ω(n log n).
 - Choose L of length 2^r such that $C(L) \ge r 2^{r-2}$.
 - Connect ends, but delay communication across boundary.
 - line graph by itself must never elect leader
- Corollary: For any n ≥ 0, there is a ring R of size n such that C(R) = Ω(n log n).

Leader election in general network

- Can get asynchronous version of synchronous alg
 - can simulate rounds with counters
 - need to know diameter for termination
- Better algorithms later
 - no need to know diameter
 - lower message complexity

Spanning trees and searching

- Spanning trees used for broadcast/convergecast
- Assume (for rest of these algorithms)
 - undirected graph (i.e., bidirectional communication)
 - $-\operatorname{root}\,i_0$
 - size and diameter unknown
 - can identify in- and out-edges to same neighbor
- Problem: each process outputs parent in tree
- Start from SynchBFS algorithm
 - $-i_0$ "flood" search msg; parent is first that sends it to process
 - still yields spanning tree in asynchronous network, but not necessarily breadth-first tree

- Signature
 - *in* receive("search")_{j,i}, j \in nbrs
 - **out** send("search")_{i,j}, j \in nbrs
 - **out** parent(j)_i, $j \in nbrs$
- State
 - parent: nbrs U { null }; init null
 - reported: Boolean; init false
 - for each $j \in nbrs$
 - send(j) ∈ { search, null };
 init search iff i = i₀

- send("search")_{i,j}
 pre: send(j) = search
 eff: send(j) := null
- receive("search")_{j,i}
 eff: if i ≠ i₀ and parent = null then
 parent := j
 for k ∈ nbrs { j } do
 send(k) := search
- parent(j)_i
 pre: parent = j
 reported = false
 eff: reported := true

- Complexity
 - msg: O(|E|)
 - time: (diam) (I+d) + I
- Anomaly: Paths may be longer than diameter!
 - messages may travel faster along longer paths

- Applications of spanning tree (as in synchronous alg)
 - message broadcast: piggyback on search msg
 - child pointers: easy because of bidirectional communication
 - use precomputed tree to do broadcast/convergecast
 - O(n) msg complexity; O(h(I+d)) time complexity
 - see book for details

h = height of tree; may be n

Breadth-first search

- In asynchronous networks, "SynchBFS" does not guarantee spanning tree constructed is breadth-first
 - long paths may be traversed faster than short ones
- We can modify each process to keep track of distance, change parent when it hears of shorter path.
 - relaxation algorithm (like Bellman-Ford)
 - must inform neighbors of change
 - eventually tree stabilizes into breadth-first spanning tree

Signature

- *in* receive(m)_{j,i}, $m \in \mathbf{N}$, $j \in nbrs$
- *out* send(m)_{i,j}, $m \in \mathbf{N}$, $j \in nbrs$
- State
 - dist: N U { ∞ }; init 0 if i = i₀, else ∞
 - parent: nbrs U { null }
 - for each $j \in nbrs$
 - send(j): FIFO queue of N; init { 0 } if i = i₀, else Ø

- send(m)_{i,j}
 pre: m is head of send(j)
 eff: remove head of send(j)
- receive(m)_{j,i}
 eff: if m+1 < dist then
 dist := m+1
 parent := j
 for k ∈ nbrs { j } do
 add dist to send(k)</pre>
- No parent actions.
 - no one knows when it's done

- Complexity
 - msg: O(n |E|)

may send O(n) msgs on each link (one for each distance estimate)
 time: O(diam n (I+d))

- Reduce complexity if know bound D on diameter
 msg: O(D |E|); time: O(diam D (I+d))
- To determine parents, use convergecast
 - ack receipt after "children" ack receipt (of forwarded message)
 - may have several messages "pending" (i.e., awaiting acks)
 - when i_0 gets ack from all its neighbors, everyone is done (why?)
 - complexity?

Layered BFS

- Run in phases
 - in phase k,find nodes at depth k
 - start by i₀ sending newphase (broadcast along tree)
 - end by convergecast (from nodes at depth k)
- Complexity
 - msg: O(|E| + n diam)
 - time: O(diam² (I+d))

LayeredBFS vs AsynchBFS

- Alternative timing assumption
 - local computation negligible
 - $-\Delta$ is bound on time from send to receive (i.e., no "pile-up")
- Message complexity
 - AsynchBFS: O(D |E|)
 - LayeredBFS: O(|E| + n diam)
- Time complexity
 - AsynchBFS: O(diam Δ)
 - LayeredBFS: O(diam² Δ)
- Can make "hybrid" algorithm (in book)
 - add m layers in each phase

Shortest paths

- Same assumptions as before, but add edge weights
 - use weight function: weight(i,j)
 - assume nonnegative weights; same in each direction
- Output shortest distance and parent
- Use Bellman-Ford asynchronously
 - used to establish routes in ARPANET 1969-1980
 - where was synchrony used? what other assumptions?

AsynchBellmanFord

Signature

- *in* receive(w)_{j,i}, m ∈ $\mathbf{R}^{\ge 0}$, j ∈ nbrs
- -*out* send(w)_{i,j}, m ∈ **R**^{≥0}, j ∈ nbrs
- State
 - dist: R^{≥0} U { ∞ }; init 0 if i = i₀, else ∞
 - parent: nbrs U { null }
 - for each $j \in nbrs$
 - send(j): FIFO queue of R^{≥0};
 init { 0 } if i = i₀, else Ø

- send(w)_{i,j}
 pre: m is head of send(j)
 eff: remove head of send(j)
- receive(w)_{j,i}
 eff: if w+weight(j,i) < dist then
 dist := w+weight(j,i)
 parent := j
 for k ∈ nbrs { j } do
 add dist to send(k)</pre>

AsynchBellmanFord

- Termination
 - use broadcast/convergecast (as in AsynchBFS)
- Complexity
 - (n-1)! simple paths from i0, so msg complexity = O((n-1)! |E|), time complexity = O(n!(I+d))

• time complexity = $O(n \Delta)$?

– in some exec of network below, i_k sends 2^k messages to i_{k+1} , so msg complexity is $\Omega(2^{n/2})$ and time complexity is $\Omega(2^{n/2} d)$

Minimum spanning tree

- Assumptions as before, and edge weights distinct
- Problem:

Input: wakeup actions, asynchronous at one or more nodes

- Gallager-Humblet-Spira algorithm
 - read this paper!
 - recall synchronous variant
 - grow tree in levels

Next lecture

- Gallager-Humblet-Spira algorithm (Chapter 15.5)
- Synchronizers (Chapter 16)