6.852 Lecture 9

e | ower bound on leader election

» Basic asynchronous network algorithms

— constructing a spanning tree
- breadth-first search

- shortest paths

—minimum spanning tree

» Reading: Chapter 15 (continued)
* Next lecture: Chapter 16.

Last lecture

* Finished defining formal model
 Leader election algorithm for asynchronous networks
» Described lower bound for leader election

Leader election In a ring

* Lower bound in asynchronous network if n is unknown

- Key: “assemble” ring from pieces which delay communication

« silent state: no more messages will be sent without input
* ring looks like “line” if communication delayed across ends
» some lines may send Q(n log n) msgs before becoming silent

 connect ends of such a line to make a ring
- delay communication across ends of line

| ower bound on leader election

e C(a) = number of messages sent in o
e C(A) = sup{ C(a) | o is an input-free execution of A}

« Lemma 1: If L4, L,, L; are three line graphs of length |
such that C(L;) = k for all i
then C(L; join L;) = 2k + I/2 for some i # |

- Suppose not. Consider three rings:

| ower bound on leader election

o Let o, be finite execution of L; with 2 k msgs.

« Run a4 then a, then a4 ,, with msgs across boundary

- since fewer than 1/2 add'l msgs, middles of L; & L, still silent

* not enough msgs to reach them

| ower bound on leader election

o Let o, be finite execution of L; with 2 k msgs.

« Run a4 then a, then a4 ,, with msgs across boundary

- since fewer than |/2 add'l msgs, middles of L; & L, still no input

* not enough msgs to reach them
e Similarly for a., 4.

- no interference between o,y , and ay 4

| ower bound on leader election

» Connect both ends into ring
- left neighbor is clockwise around ring
« Run a4 then a, then a4 5 then ay 4.

- must be silent in final state
- must elect leader (possibly in extension, but no more msgs)

» Assume WLOG that elected leader is in "bottom half”

—can't be midpoint of either L, or L,

| ower bound on leader election

« Same argument for ring(L, join Lj)

— Can leader be in bottom half?

| ower bound on leader election

« Same argument for ring(L, join Lj)

— Can leader be in bottom half? No!
- s0 must be in top half

| ower bound on leader election

| ower bound on leader election

-

| ower bound on leader election

 Lemma 2: There are an infinite number of processes
that can send a message before receiving any.

| ower bound on leader election

« Lemma 1: If L4, L,, L are three line graphs of length | such
that C(L;) 2 k for all i, then C(L; join L;) = 2k + |/2 for some i # j.

 Lemma 2: There are an infinite number of processes that can
send a message before receiving any.

 Lemma 3: For any r 2 0, there are infinitely many disjoint
line graphs L of length 2" such that C(L) = r 2™

- base case (r = 0): Trivial.
- base case (r = 1): Use Lemma 1.
—inductive case (r = 2):
. Choose L, L,, L3 of length 2" with C(L;) = (r-1) 22
- By Lemma 2, for some i,j, C(L; join L) = 2(r-1)2 + 27/2 = r 27,

| ower bound on leader election

 Lemma 3: For any r 2 0, there are infinitely many
disjoint line graphs L of length 2" such that C(L) =2 r 2.

 Theorem: Foranyr = 0, thereisaring R of size n=2'
such that C(R) = Q(n log n).
- Choose L of length 2" such that C(L) = r 2.
- Connect ends, but delay communication across boundary.

e line graph by itself must never elect leader

» Corollary: For any n = 0, there is a ring R of size n
such that C(R) = Q(n log n).

Leader election in general network

» Can get asynchronous version of synchronous alg

— can simulate rounds with counters
— need to know diameter for termination

» Better algorithms later

- no need to know diameter
- lower message complexity

Spanning trees and searching

« Spanning trees used for broadcast/convergecast
» Assume (for rest of these algorithms)

—undirected graph (i.e., bidirectional communication)
—root Iy

- size and diameter unknown
- can identify in- and out-edges to same neighbor

* Problem: each process outputs parent in tree
 Start from SynchBFS algorithm
-1y “flood” search msg; parent is first that sends it to process

- still yields spanning tree in asynchronous network,
but not necessarily breadth-first tree

AsynchSpanningTree

* Signature - send(“search”),;;

. o o pre: send(j) = search
~ in receive("search”);;, j € nbrs eff: send(j) = nul

- out send(“search’);;, j Enbrs receive(“search”);

- out parent(j),, j € nbrs eff: if i # iy and parent = null then
. parent ;= |

State for k € nbrs - {j } do

- parent: nbrs U { null }; init null send(k) := search

- reported: Boolean; init false « parent(j),

—for each j € nbrs pre: parent = |
reported = false

» send(j) € { search, null }; eff: reported := true

init search iff i = i

AsynchSpanningTree

N

AsynchSpanningTree

N

AsynchSpanningTree

D!

AsynchSpanningTree

NP

AsynchSpanningTree

AsynchSpanningTree

R

AsynchSpanningTree

| A

AsynchSpanningTree

AsynchSpanningTree

N

AsynchSpanningTree

» Complexity
-msg: O(|E|)
—time: (diam) (I+d) + |
 Anomaly: Paths may be longer than diameter!

- messages may travel faster along longer paths

ENP:

AsynchSpanningTree

* Applications of spanning tree (as in synchronous alg)

- message broadcast: piggyback on search msg
- child pointers: easy because of bidirectional communication
- use precomputed tree to do broadcast/convergecast

* O(n) msg complexity; O(h(l+d)) time complexity
- see book for details
h = height of tree; may be n

Breadth-first search

* |In asynchronous networks, “SynchBFS” does not
guarantee spanning tree constructed is breadth-first

-long paths may be traversed faster than short ones

* \We can modify each process to keep track of distance,
change parent when it hears of shorter path.

- relaxation algorithm (like Bellman-Ford)
- must inform neighbors of change
- eventually tree stabilizes into breadth-first spanning tree

AsynchBFS

« Signature - send(m);;
pre: m is head of send(j)

- in receive(m) eff: remove head of send())

i MEN, | € nbrs

-outsend(m);;, meN,jenbrs receive(m);
e State eff: if m+1 < dist then
_ dist := m+1
~distNU (= parent =
init 0 if i = iy, else o for k € nbrs - {j}do
- parent: nbrs U { null } add dist to send(k)
—for each j € nbrs
» send(j): FIFO queue of N; * No parent actions.

nit {0 }if 1 =1, else & - no one knows when it's done

AsynchBFS

AsynchBFS

AsynchBFS

AsynchBFS

AsynchBFS

Cy
gt

AsynchBFS

AsynchBFS

AsynchBFS

AsynchBFS

AsynchBFS

AsynchBFS

AsynchBFS

AsynchBFS

AsynchBFS

AsynchBFS

AsynchBFS

» Complexity
-msg: O(n |E|)

* may send O(n) msgs on each link (one for each distance estimate)
—time: O(diam n (I+d))

* Reduce complexity if know bound D on diameter
-msg: O(D |E|); time: O(diam D (I+d))
» To determine parents, use convergecast

—ack receipt after “children” ack receipt (of forwarded message)
* may have several messages “pending” (i.e., awaiting acks)
- when iy gets ack from all its neighbors, everyone is done (why?)

- complexity?

Layered BFS

* Run in phases

—in phase k,find nodes at depth k
- start by iy sending newphase (broadcast along tree)

- end by convergecast (from nodes at depth k)
» Complexity

-msg: O(|E| + n diam)

—time: O(diam? (I+d))

LayeredBFS vs AsynchBFS

» Alternative timing assumption

- local computation negligible
- A is bound on time from send to receive (i.e., no “pile-up”)

* Message complexity
- AsynchBFS: O(D |E|)
- LayeredBFS: O(|E| + n diam)
e Time complexity
- AsynchBFS: O(diam A)
- LayeredBFS: O(diam? A)
» Can make “hybrid” algorithm (in book)

—add m layers in each phase

Shortest paths

 Same assumptions as before, but add edge weights

- use weight function: weight(i,j)
—assume nonnegative weights; same in each direction

» Output shortest distance and parent

» Use Bellman-Ford asynchronously

- used to establish routes in ARPANET 1969-1980
- where was synchrony used? what other assumptions?

AsynchBellmanFord

- Signature » send(w);
_ | o . pre: m is head of send(j)
-inreceive(w), m € R, JENbrs o4 omove head of send())

-out send(w);;, mER*,jEnbrs | receive(w);

e State eff: if w+weight(j,i) < dist then
dist .= w+weight(j,i)
~dist: R° U { = }; parent ;= |
init 0 if i = iy, else o fork €nbrs - {j}do

— parent: nbrs U { null } add dist to send(k)

—for each j € nbrs

* send(j): FIFO queue of R*;
init{0}ifi =iy, else @

AsynchBellmanFord

e Termination
- use broadcast/convergecast (as in AsynchBFS)
« Complexity

- (n-1)! simple paths from i0,
so msg complexity = O((n-1)! |E|), time complexity = O(n!(I+d))

* time complexity = O(n A)?

—-in some exec of network below, i, sends 2“ messages to iy,
so msg complexity is Q(2"%) and time complexity is Q(2"* d)

Minimum spanning tree

» Assumptions as before, and edge weights distinct

* Problem:
Input: wakeup actions, asynchronous at one or more
nodes

» Gallager-Humblet-Spira algorithm
-read this paper!

- recall synchronous variant

e grow tree in levels

Next lecture

» Gallager-Humblet-Spira algorithm (Chapter 15.5)
» Synchronizers (Chapter 16)

