

6.852 Lecture 9

● Lower bound on leader election

● Basic asynchronous network algorithms
– constructing a spanning tree

– breadth-first search

– shortest paths

– minimum spanning tree

● Reading: Chapter 15 (continued)

● Next lecture: Chapter 16.

Last lecture

● Finished defining formal model

● Leader election algorithm for asynchronous networks

● Described lower bound for leader election

Leader election in a ring

● Lower bound in asynchronous network if n is unknown
– Key: “assemble” ring from pieces which delay communication

● silent state: no more messages will be sent without input
● ring looks like “line” if communication delayed across ends
● some lines may send Ω(n log n) msgs before becoming silent
● connect ends of such a line to make a ring

– delay communication across ends of line

Lower bound on leader election

● C(α) = number of messages sent in α

● C(A) = sup{ C(α) | α is an input-free execution of A }

● Lemma 1: If L1, L2, L3 are three line graphs of length l
 such that C(Li) ≥ k for all i
 then C(Li join Lj) ≥ 2k + l/2 for some i ≠ j

– Suppose not. Consider three rings:

L1 L2 L1 L3 L2 L3

Lower bound on leader election

● Let αi be finite execution of Li with ≥ k msgs.

● Run α1 then α2 then α1,2, with msgs across boundary

– since fewer than l/2 add'l msgs, middles of L1 & L2 still silent

● not enough msgs to reach them

L1 L2

Lower bound on leader election

L2 L1

● Let αi be finite execution of Li with ≥ k msgs.

● Run α1 then α2 then α1,2, with msgs across boundary

– since fewer than l/2 add'l msgs, middles of L1 & L2 still no input

● not enough msgs to reach them

● Similarly for α2,1.

– no interference between α1,2 and α2,1

L1 L2

Lower bound on leader election

L1 L2

● Connect both ends into ring
– left neighbor is clockwise around ring

● Run α1 then α2 then α1,2 then α2,1.

– must be silent in final state

– must elect leader (possibly in extension, but no more msgs)

● Assume WLOG that elected leader is in “bottom half”

– can't be midpoint of either L1 or L2

Lower bound on leader election

L1 L2 L2 L3

● Same argument for ring(L2 join L3)

– Can leader be in bottom half?

Lower bound on leader election

L1 L2 L2 L3

L2

L3L1

● Same argument for ring(L2 join L3)

– Can leader be in bottom half? No!

– so must be in top half

Lower bound on leader election

L1 L2

L2 L3

Lower bound on leader election

L1 L2

L2 L3 L1 L3

L1 L3

L2

L3L1

L3

L2L1

Lower bound on leader election

● Lemma 2: There are an infinite number of processes
that can send a message before receiving any.

p1 p2 p1 p2

Lower bound on leader election

● Lemma 1: If L1, L2, L3 are three line graphs of length l such
that C(Li) ≥ k for all i, then C(Li join Lj) ≥ 2k + l/2 for some i ≠ j.

● Lemma 2: There are an infinite number of processes that can
send a message before receiving any.

● Lemma 3: For any r ≥ 0, there are infinitely many disjoint
line graphs L of length 2r such that C(L) ≥ r 2r-2.
– base case (r = 0): Trivial.

– base case (r = 1): Use Lemma 1.

– inductive case (r ≥ 2):

● Choose L1, L2, L3 of length 2r-1 with C(Li) ≥ (r-1) 2r-3.

● By Lemma 2, for some i,j, C(Li join Lj) ≥ 2(r-1)2r-3 + 2r-1/2 = r 2r-2.

Lower bound on leader election

● Lemma 3: For any r ≥ 0, there are infinitely many
disjoint line graphs L of length 2r such that C(L) ≥ r 2r-2.

● Theorem: For any r ≥ 0, there is a ring R of size n = 2r
 such that C(R) = Ω(n log n).

– Choose L of length 2r such that C(L) ≥ r 2r-2.

– Connect ends, but delay communication across boundary.
● line graph by itself must never elect leader

● Corollary: For any n ≥ 0, there is a ring R of size n
 such that C(R) = Ω(n log n).

Leader election in general network

● Can get asynchronous version of synchronous alg
– can simulate rounds with counters

– need to know diameter for termination

● Better algorithms later
– no need to know diameter

– lower message complexity

Spanning trees and searching

● Spanning trees used for broadcast/convergecast

● Assume (for rest of these algorithms)
– undirected graph (i.e., bidirectional communication)

– root i0

– size and diameter unknown

– can identify in- and out-edges to same neighbor

● Problem: each process outputs parent in tree

● Start from SynchBFS algorithm

– i0 “flood” search msg; parent is first that sends it to process

– still yields spanning tree in asynchronous network,
but not necessarily breadth-first tree

AsynchSpanningTree

● Signature

– in receive(“search”)j,i, j ∈ nbrs

– out send(“search”)i,j, j ∈ nbrs

– out parent(j)i, j ∈ nbrs

● State
– parent: nbrs U { null }; init null

– reported: Boolean; init false

– for each j ∈ nbrs

● send(j) ∈ { search, null };
init search iff i = i0

● send(“search”)i,j
pre: send(j) = search
eff: send(j) := null

● receive(“search”)j,i
eff: if i ≠ i0 and parent = null then
 parent := j
 for k ∈ nbrs - { j } do
 send(k) := search

● parent(j)i
pre: parent = j
 reported = false
eff: reported := true

AsynchSpanningTree

AsynchSpanningTree

s

AsynchSpanningTree

s

s

AsynchSpanningTree

s

AsynchSpanningTree

s

AsynchSpanningTree

ss

AsynchSpanningTree

s

AsynchSpanningTree

s

s

s

AsynchSpanningTree

AsynchSpanningTree

● Complexity
– msg: O(|E|)

– time: (diam) (l+d) + l

● Anomaly: Paths may be longer than diameter!
– messages may travel faster along longer paths

AsynchSpanningTree

● Applications of spanning tree (as in synchronous alg)
– message broadcast: piggyback on search msg

– child pointers: easy because of bidirectional communication

– use precomputed tree to do broadcast/convergecast
● O(n) msg complexity; O(h(l+d)) time complexity

– see book for details
h = height of tree; may be n

Breadth-first search

● In asynchronous networks, “SynchBFS” does not
guarantee spanning tree constructed is breadth-first
– long paths may be traversed faster than short ones

● We can modify each process to keep track of distance,
change parent when it hears of shorter path.
– relaxation algorithm (like Bellman-Ford)

– must inform neighbors of change

– eventually tree stabilizes into breadth-first spanning tree

AsynchBFS

● Signature

– in receive(m)j,i, m ∈ N, j ∈ nbrs

– out send(m)i,j, m ∈ N, j ∈ nbrs

● State

– dist: N U { ∞ };
init 0 if i = i0, else ∞

– parent: nbrs U { null }

– for each j ∈ nbrs

● send(j): FIFO queue of N;
init { 0 } if i = i0, else ∅

● send(m)i,j
pre: m is head of send(j)
eff: remove head of send(j)

● receive(m)j,i
eff: if m+1 < dist then
 dist := m+1
 parent := j
 for k ∈ nbrs - { j } do
 add dist to send(k)

● No parent actions.

– no one knows when it's done

AsynchBFS

0

AsynchBFS

0

0

AsynchBFS

0

0

0

AsynchBFS

0

1

0

AsynchBFS

0

1

1

1

AsynchBFS

0

1

1

2

311

AsynchBFS

0

1

1

2

4

311

AsynchBFS

0

1

1

2

4

311
4

4

AsynchBFS

0

1

1

2

2

31
4

4

AsynchBFS

0

1

1

2

2

5

31 1

2

AsynchBFS

6

0

1

1

2

2

5

31 1

2

AsynchBFS

6

0

1

1

2

2

3

31 1

AsynchBFS

6

0

1

1

2

2

2

3

1

1

AsynchBFS

2

0

1

1

2

2

2

3

0

1

AsynchBFS

1

0

1

1

2

2

2

3
1

AsynchBFS

● Complexity
– msg: O(n |E|)

● may send O(n) msgs on each link (one for each distance estimate)

– time: O(diam n (l+d))

● Reduce complexity if know bound D on diameter
– msg: O(D |E|); time: O(diam D (l+d))

● To determine parents, use convergecast
– ack receipt after “children” ack receipt (of forwarded message)

● may have several messages “pending” (i.e., awaiting acks)

– when i0 gets ack from all its neighbors, everyone is done (why?)

– complexity?

Layered BFS

● Run in phases
– in phase k,find nodes at depth k

– start by i0 sending newphase (broadcast along tree)

– end by convergecast (from nodes at depth k)

● Complexity
– msg: O(|E| + n diam)

– time: O(diam2 (l+d))

LayeredBFS vs AsynchBFS

● Alternative timing assumption
– local computation negligible

– ∆ is bound on time from send to receive (i.e., no “pile-up”)

● Message complexity
– AsynchBFS: O(D |E|)

– LayeredBFS: O(|E| + n diam)

● Time complexity
– AsynchBFS: O(diam ∆)

– LayeredBFS: O(diam2 ∆)

● Can make “hybrid” algorithm (in book)
– add m layers in each phase

Shortest paths

● Same assumptions as before, but add edge weights
– use weight function: weight(i,j)

– assume nonnegative weights; same in each direction

● Output shortest distance and parent

● Use Bellman-Ford asynchronously
– used to establish routes in ARPANET 1969-1980

– where was synchrony used? what other assumptions?

AsynchBellmanFord

● Signature

– in receive(w)j,i, m ∈ R≥0, j ∈ nbrs

– out send(w)i,j, m ∈ R≥0, j ∈ nbrs

● State

– dist: R≥0 U { ∞ };
init 0 if i = i0, else ∞

– parent: nbrs U { null }

– for each j ∈ nbrs

● send(j): FIFO queue of R≥0;
init { 0 } if i = i0, else ∅

● send(w)i,j
pre: m is head of send(j)
eff: remove head of send(j)

● receive(w)j,i
eff: if w+weight(j,i) < dist then
 dist := w+weight(j,i)
 parent := j
 for k ∈ nbrs - { j } do
 add dist to send(k)

AsynchBellmanFord
● Termination

– use broadcast/convergecast (as in AsynchBFS)

● Complexity
– (n-1)! simple paths from i0,

so msg complexity = O((n-1)! |E|), time complexity = O(n!(l+d))
● time complexity = O(n ∆)?

– in some exec of network below, ik sends 2k messages to ik+1,
so msg complexity is Ω(2n/2) and time complexity is Ω(2n/2 d)

i0 i1

0

0

2k-1

i2

0

0

2k-2

ik-1

21

ik

0

0

20

ik+10

Minimum spanning tree

● Assumptions as before, and edge weights distinct

● Problem:
Input: wakeup actions, asynchronous at one or more
nodes

● Gallager-Humblet-Spira algorithm
– read this paper!

– recall synchronous variant
● grow tree in levels

Next lecture

● Gallager-Humblet-Spira algorithm (Chapter 15.5)

● Synchronizers (Chapter 16)

