

6.852 Lecture 7

● Asynchronous systems

● Formal model
– I/O automata

– behaviors

– simulations

– composition

● Reading: Chapter 8

Asynchronous systems

● No timing assumptions
– no rounds

● Asynchronous networks
– nodes communicating via channels

● Asynchronous shared memory
– processes communicating via shared objects

p1

C1,2

p2
C2,1

send(m)1,2

send(m)2,1

receive(m)1,2

receive(m)2,1

init(v)1

decide(v)1

Asynchronous network

Specifying problems and systems
● Processes and channels are automata

– take actions to change state

– reactive
● interact with environment via input and output actions
● not just map from input values to output values

● Behavior
– we observe externally visible actions

● state is hidden

– interleaving semantics
● behavior is sequence of actions

– problems specify allowable behaviors

Input/output automaton

● General mathematical model
– very little structure

● Designed for “structured” system description
– composition

– hierarchical description/reasoning

● Supports good proof techniques
– invariants

– simulation relations

– compositional reasoning

Input/output automaton

● State transition system
– transitions labeled by actions

● Actions classified as input, output, internal
– input, output are externally visible

– output, internal are locally controlled

Input/output automaton

● sig(A) = (in(A), out(A), int(A))
– input, output, internal actions (disjoint)

– acts(A) = in(A) ∪ out(A) ∪ int(A)

● states(A)

● start(A) ⊆ states(A)

● trans(A) ⊆ states(A) × acts(A) × states(A)

– input-enabled

● tasks(A), partition of local(A)
– needed for liveness

Input/output automaton

● A step of an automaton is an element of trans

● Action π is enabled in a state s

– if there is a step (s, π,s') for some s'

● I/O automata must be input-enabled
– every input action is enabled in every state

– captures idea that automaton cannot control inputs

– enables compositional reasoning

● tasks correspond to “threads of control”
– used to define fairness

– needed to guarantee liveness

Channel automaton

● Reliable unidirectional FIFO channel for 2 processes
– fix message “alphabet” M

● signature

– input actions: send(m) for m ∈ M

– output actions: receive(m) for m ∈ M

– no internal actions

● states
– queue: FIFO queue of M, initially empty

C
send(m) receive(m)

Channel automaton

● trans
– send(m)

● effect: add m to (end of) queue

– receive(m)
● precondition: m is at head of queue
● effect: remove head of queue

● tasks
– all receive actions in one task

C
send(m) receive(m)

Channel automaton

● trans

– send(m)i,j
● effect: add m to (end of) queue

– receive(m)i,j
● precondition: m is at head of queue
● effect: remove head of queue

● tasks
– all receive actions in one task

Ci,j
send(m)i,j receive(m)i,j

pi pj

Executions

● An I/O automaton executes as follows:
– start at some start state

– repeatedly take step from current state to new state

● Formally, an execution is a sequence:

– s0 π1 s1 π2 s2 π3 s3 π4 s4 π5 s5 ... (if finite, end in state)

– s0 is a start state

– (si, π +1i , si+1) is a step (i.e., in trans)

λ, send(a), a, send(b), ab, receive(a), b, receive(b), λ

Executions

● An I/O automaton executes as follows:
– start at some start state

– repeatedly take step from current state to new state

● Formally, an execution is a sequence:

– s0 π1 s1 π2 s2 π3 s3 π4 s4 π5 s5 ... (if finite, end in state)

– s0 is a start state

– (si, π +1i , si+1) is a step (i.e., in trans)

λ, send(a), a, send(b), ab, receive(a), b, receive(b), λ

execution fragment

Invariants and reachable states

● A state is reachable if it appears in some execution.
– equivalently, at the end of some finite execution

● An invariant is a predicate that is true on every
reachable state.
– main tool for proving properties of concurrent algorithms

– typically prove by induction on length of execution

Traces

● A trace of an execution is the subsequence of external
actions in the execution

– denoted trace(α), where α is an execution

– models “observable behavior”

λ, send(a), a, send(b), ab, receive(a), b, receive(b), λ

send(a), send(b), receive(a), receive(b)

Trace properties

● A trace property P is a pair of:
– sig(P): external signature (i.e., no internal actions)

– traces(P): set of sequences of actions in sig(P)

– can specify allowable behaviors

● Automaton A satisfies trace property P if

– extsig(A) = sig(P) and traces(A) ⊆ traces(P)

– extsig(A) = sig(P) and fairtraces(A) ⊆ traces(P)

Automata as specifications

● Every I/O automaton specifies a trace property
– (extsig(A), traces(A))

– we can use an automaton as a problem specification

● Hierarchical proofs
– important strategy for proving correctness of complex

asychronous distributed algorithms

– automaton A implements B if
● extsig(A) = extsig(B)
● traces(A) ⊆ traces(B)

– define a series of automata, each implementing the next
● first automaton models algorithm/system; last captures spec

Simulation relations

● Most common method to prove one automaton
implements another

● Similar to technique for synchronous algorithms
– map states in one to states of other

– show correspondence holds initially, is preserved each round

– also similar to abstraction function for data type implementation

● R is a simulation relation from A to B provided:

– sA ∈ start(A) implies there exists sB ∈ start(B) such that sA R sB

– if sA, sB are reachable states of A and B, sA R sB and (sA, π, s'A)
is a step, then there exists an exec fragment β starting with sB
and ending in s'B such that s'B R s'A and trace(π) = trace(β)

Simulation relations

● R is a simulation relation from A to B provided:

– sA ∈ start(A) implies there exists sB ∈ start(B) such that sA R sB

– if sA, sB are reachable states of A and B, sA R sB and (sA, π, s'A)
is a step, then there exists an exec fragment β starting with sB
and ending in s'B such that s'B R s'A and trace(π) = trace(β)

sA s'A

sB s'B

R R

π

β

Simulation relations

● Theorem: If there is a simulation relation from A to B
then traces(A) ⊆ traces(B).

s0,A

π1
s1,A

π2
s2,A

π3
s3,A

π4
s4,A

π5
s5,A

Simulation relations

● Theorem: If there is a simulation relation from A to B
then traces(A) ⊆ traces(B).

s0,A

s0,B

R

π1
s1,A

π2
s2,A

π3
s3,A

π4
s4,A

π5
s5,A

Simulation relations

● Theorem: If there is a simulation relation from A to B
then traces(A) ⊆ traces(B).

s0,A

s0,B

R

π1

β1

s1,A

s1,B

R

π2
s2,A

π3
s3,A

π4
s4,A

π5
s5,A

Simulation relations

● Theorem: If there is a simulation relation from A to B
then traces(A) ⊆ traces(B).

s0,A

s0,B

R

π1

β1

s1,A

s1,B

R

π2

β2

s2,A

s2,B

R

π3

β3

s3,A

s3,B

R

π4

β4

s4,A

s4,B

R

π5

β5

s5,A

s5,B

R

Fairness

● Recall tasks(A): partition of local(A)
– task corresponds to “thread of control”

– used to define “fair” executions
● a “thread” that is continuously enabled gets to take a step

– needed to prove liveness

● Formally, an execution α is fair to C ∈ tasks (A) if:

– α is finite and C is not enabled in final state

– α is infinite and either

● infinitely many events in C occur in α; or

● C is not enabled in infinitely many states in α

Fairness

● Example: Channel
– only one task (all receive actions)

– an finite execution of Channel is fair iff queue is empty

– Is every infinite execution of Channel fair?

● Recall alternative defn of “A satisfies P”

– if extsig(A) = sig(P) and fairtraces(A) ⊆ traces(P)

– weaker than traces(A) ⊆ traces(P)

● Fairness is a liveness property

Safety and liveness

● Safety property: “bad” thing doesn't happen
– nonempty

– prefix-closed

– limit-closed

● Liveness property: “good” thing happens eventually
– every finite sequence over acts(P) has an extension (is a

prefix of) some sequence in traces(P)

Composition
● “Put multiple automata together”

– output actions of one may be input actions of others

● Look first at composing two automata
– generalize to composing infinitely many automata (in book)

● Recall:
– sig(A) = (in(A), out(A), int(A))

– local(A) = out(A) ∪ int(A)

● Two automata A and B are compatible if
– local(A) and local(B) are disjoint

– int(A) and acts(B) are disjoint

– int(B) and acts(A) are disjoint

Composition

● A × B, composition of A and B

– int(A × B) = int(A) ∪ int(B)

– out(A × B) = out(A) ∪ out(B)

– in(A × B) = in(A) ∪ in(B) – (out(A) ∪ out(B))

– states(A × B) = states(A) × states(B)

– start(A × B) = start(A) × start(B)

– trans(A × B): includes (s, π, s') iff

● (sA, π, s'A) ∈ trans(A) if π ∈ acts(A); sA = s'A otherwise

● (sB, π, s'B) ∈ trans(B) if π ∈ acts(B); sB = s'B otherwise

– tasks(A × B) = tasks(A) ∪ tasks(B)

Composition

● Projection

● Execution pasting

● Trace pasting

Next lecture

● Finish up composition
– theorems

– examples

● Basic asynchronous network algorithms
– Chapter 15

