6.852 Lecture 7

- Asynchronous systems
- Formal model
 - I/O automata
 - behaviors
 - simulations
 - composition
- Reading: Chapter 8

Asynchronous systems

- No timing assumptions
 - no rounds
- Asynchronous networks
 - nodes communicating via channels
- Asynchronous shared memory
 - processes communicating via shared objects

Asynchronous network

Specifying problems and systems

- Processes and channels are automata
 - take **actions** to change state
 - reactive
 - interact with environment via input and output actions
 - not just map from input values to output values
- Behavior
 - we observe **externally visible** actions
 - state is hidden
 - interleaving semantics
 - behavior is sequence of actions
 - problems specify allowable behaviors

- General mathematical model
 - very little structure
- Designed for "structured" system description
 - composition
 - hierarchical description/reasoning
- Supports good proof techniques
 - invariants
 - simulation relations
 - compositional reasoning

- State transition system
 - transitions labeled by actions
- Actions classified as input, output, internal
 - input, output are externally visible
 - output, internal are locally controlled

- sig(A) = (in(A), out(A), int(A))
 - input, output, internal actions (disjoint)
 - $acts(A) = in(A) \cup out(A) \cup int(A)$
- states(A)
- start(A) \subseteq states(A)
- trans(A) \subseteq states(A) × acts(A) × states(A)
 - input-enabled
- tasks(A), partition of local(A)
 - needed for liveness

- A step of an automaton is an element of trans
- Action π is **enabled** in a state s
 - if there is a step (s, π ,s') for some s'
- I/O automata must be input-enabled
 - every input action is enabled in every state
 - captures idea that automaton cannot control inputs
 - enables compositional reasoning
- tasks correspond to "threads of control"
 - used to define fairness
 - needed to guarantee liveness

- Reliable unidirectional FIFO channel for 2 processes
 - fix message "alphabet" M
- signature
 - input actions: send(m) for $m \in M$
 - output actions: receive(m) for $m \in M$
 - no internal actions
- states
 - queue: FIFO queue of M, initially empty

Channel automaton

- trans
 - send(m)
 - effect: add m to (end of) queue
 - receive(m)
 - precondition: m is at head of queue
 - effect: remove head of queue
- tasks
 - all receive actions in one task

Channel automaton

- trans
 - send(m)_{i,j}
 - effect: add m to (end of) queue
 - receive(m)_{i,j}
 - precondition: m is at head of queue
 - effect: remove head of queue
- tasks
 - all receive actions in one task

Executions

- An I/O automaton executes as follows:
 - start at some start state
 - repeatedly take step from current state to new state
- Formally, an **execution** is a sequence:
 - $s_0 \pi_1 s_1 \pi_2 s_2 \pi_3 s_3 \pi_4 s_4 \pi_5 s_5 \dots$ (if finite, end in state)
 - s₀ is a start state
 - $(s_i, \pi_{i+1}, s_{i+1})$ is a step (i.e., in trans)

 λ , send(a), a, send(b), ab, receive(a), b, receive(b), λ

Executions

execution fragment

- An I/O automaton executes as follows:
 - start at some start state
 - repeatedly take step from current take to new state
- Formally, an **execution** is a sequence:
 - $s_0 \pi_1 s_1 \pi_2 s_2 \pi_3 s_3 \pi_4 s_4 \pi_5 s_5 \dots$ (if finite, end in state)
 - s₀ is a start state
 - (s_i, π_{i+1} , s_{i+1}) is a step (i.e., in trans)

 λ , send(a), a, send(b), ab, receive(a), b, receive(b), λ

Invariants and reachable states

- A state is **reachable** if it appears in some execution.
 - equivalently, at the end of some finite execution
- An **invariant** is a predicate that is true on every reachable state.
 - main tool for proving properties of concurrent algorithms
 - typically prove by induction on length of execution

Traces

- A trace of an execution is the subsequence of external actions in the execution
 - denoted trace(α), where α is an execution
 - models "observable behavior"

 λ , send(a), a, send(b), ab, receive(a), b, receive(b), λ

send(a), send(b), receive(a), receive(b)

Trace properties

- A trace property P is a pair of:
 - sig(P): external signature (i.e., no internal actions)
 - traces(P): set of sequences of actions in sig(P)
 - can specify allowable behaviors
- Automaton A satisfies trace property P if
 - extsig(A) = sig(P) and traces(A) \subseteq traces(P)
 - extsig(A) = sig(P) and fairtraces(A) \subseteq traces(P)

Automata as specifications

- Every I/O automaton specifies a trace property
 - (extsig(A), traces(A))
 - we can use an automaton as a problem specification
- Hierarchical proofs
 - important strategy for proving correctness of complex asychronous distributed algorithms
 - automaton A implements B if
 - extsig(A) = extsig(B)
 - traces(A) \subseteq traces(B)
 - define a series of automata, each implementing the next
 - first automaton models algorithm/system; last captures spec

- Most common method to prove one automaton implements another
- Similar to technique for synchronous algorithms
 - map states in one to states of other
 - show correspondence holds initially, is preserved each round
 - also similar to abstraction function for data type implementation
- R is a **simulation relation** from A to B provided:
 - $s_A \in \text{start}(A)$ implies there exists $s_B \in \text{start}(B)$ such that $s_A R s_B$
 - if s_A , s_B are reachable states of A and B, $s_A R s_B$ and (s_A, π, s'_A) is a step, then there exists an exec fragment β starting with s_B and ending in s'_B such that s'_B R s'_A and trace(π) = trace(β)

• R is a **simulation relation** from A to B provided:

- $s_A \in \text{start}(A)$ implies there exists $s_B \in \text{start}(B)$ such that $s_A R s_B$
- if s_A , s_B are reachable states of A and B, $s_A R s_B$ and (s_A, π, s'_A) is a step, then there exists an exec fragment β starting with s_B and ending in s'_B such that s'_B R s'_A and trace(π) = trace(β)

Fairness

- Recall tasks(A): partition of local(A)
 - task corresponds to "thread of control"
 - used to define "fair" executions
 - a "thread" that is continuously enabled gets to take a step
 - needed to prove liveness
- Formally, an execution α is fair to C \in tasks (A) if:
 - α is finite and C is not enabled in final state
 - α is infinite and either
 - infinitely many events in C occur in $\alpha;$ or
 - C is not enabled in infinitely many states in $\boldsymbol{\alpha}$

Fairness

- Example: Channel
 - only one task (all receive actions)
 - an finite execution of Channel is fair iff queue is empty
 - Is every infinite execution of Channel fair?
- Recall alternative defn of "A satisfies P"
 - if extsig(A) = sig(P) and fairtraces(A) \subseteq traces(P)
 - weaker than traces(A) \subseteq traces(P)
- Fairness is a **liveness** property

Safety and liveness

- **Safety** property: "bad" thing doesn't happen
 - nonempty
 - prefix-closed
 - limit-closed
- Liveness property: "good" thing happens eventually
 - every finite sequence over acts(P) has an extension (is a prefix of) some sequence in traces(P)

Composition

- "Put multiple automata together"
 - output actions of one may be input actions of others
- Look first at composing two automata
 - generalize to composing infinitely many automata (in book)
- Recall:
 - sig(A) = (in(A), out(A), int(A))
 - local(A) = out(A) \cup int(A)
- Two automata A and B are **compatible** if
 - local(A) and local(B) are disjoint
 - int(A) and acts(B) are disjoint
 - int(B) and acts(A) are disjoint

Composition

- $A \times B$, composition of A and B
 - $int(A \times B) = int(A) \cup int(B)$
 - out(A × B) = out(A) ∪ out(B)
 - in(A × B) = in(A) ∪ in(B) (out(A) ∪ out(B))
 - states($A \times B$) = states(A) × states(B)
 - start($A \times B$) = start(A) × start(B)
 - trans(A × B): includes (s, π , s') iff
 - (s_A, π , s'_A) \in trans(A) if $\pi \in$ acts(A); s_{A =} s'_A otherwise
 - $(s_B, \pi, s'_B) \in trans(B)$ if $\pi \in acts(B)$; $s_B = s'_B$ otherwise
 - tasks(A × B) = tasks(A) \cup tasks(B)

Composition

- Projection
- Execution pasting
- Trace pasting

Next lecture

- Finish up composition
 - theorems
 - examples
- Basic asynchronous network algorithms
 - Chapter 15