6.852 Lecture 3

- Algorithms in general synchronous networks (continued)
 - breadth-first search
 - broadcast, convergecast
 - shortest paths
 - minimum-weight spanning tree

Last lecture

- Lower bound for comparison-based leader election in a ring
- Leader election in general synchronous networks
 - flooding
 - reducing message complexity
 - simulations

Assume

- strongly connected digraph, UIDs
- no knowledge of size, diameter of network
- distinguished source node i₀
- Required: breadth-first spanning tree
 - spanning: contains every node
 - breadth-first: node at distance d from i₀ appears at depth d in tree
 - output: parent of each node (except i₀)

- "Mark" nodes as they get incorporated into tree
 - initially only i₀ is marked
 - round 1: i₀ sends "search" to out-nbrs
 - every round: unmarked nodes that receive "search"
 - marks self
 - designates one process that sent "search" as parent
 - send "search" to out-nbrs next round

- "Mark" nodes as they get incorporated into tree
 - initially only i₀ is marked
 - round 1: i₀ sends "search" to out-nbrs
 - every round: unmarked nodes that receive "search"
 - marks self
 - designates one process that sent "search" as parent
 - send "search" to out-nbrs next round

What state variables do we need?

- "Mark" nodes as they get incorporated into tree
 - initially only i₀ is marked
 - round 1: i₀ sends "search" to out-nbrs
 - every round: unmarked nodes that receive "search"
 - marks self
 - designates one process that sent "search" as parent
 - send "search" to out-nbrs next round
 - need flag to keep track of when to send
- Complexity: time = diameter+1; msg = |E|

- Child pointers?
 - easy with bidirectional communication
 - what if not?
 - message bit complexity
- Termination?
 - with bidirectional communication?
 - "convergecast"
 - with unidirectional communication?

Applications of BFS

- Message broadcast
 - "piggyback" (watch message bit complexity)
 - complexity: time = O(diameter); msg = O(n)
- Global computation
 - sum, or any accumulation: convergecast
 - complexity: time = O(diameter); msg = O(n)
- Leader election (without knowing diameter)
 - everyone start BFS, finds max UID
 - complexity: time = O(diam); msg = O(n |E|) or O(diam |E|)
- Compute diameter
 - all do BFS; convergecast to find height of each BFS tree;
 convergecast to find max of all heights

- Generalization of BFS
 - assume weighted digraph, UIDs, i₀
 - weights represent some (communication) cost (known)
 - all nodes know n (need for termination!)
 - require shortest-paths tree rooted at i₀
 - paths should have min weight
 - output parent, "distance" from root (by weight)

- Bellman-Ford (adapted from sequential alg)
 - "relaxation algorithm"
 - nodes maintain: dist, parent (best so far), round#
 - initially i0 has dist 0, all other ∞; parents all null
 - each round all nodes:
 - send dist to all out-nbrs
 - relaxation: compute new dist = min(dist, min_j(d_j+w_{ji}))
 - update parent if dist changes
 - stop after n-1 rounds

- Complexity: time = n-1; msg = (n-1) |E|
 - can we reduce time complexity? diameter?
 - what about message complexity?
- Proof?

- Complexity: time = n-1; msg = (n-1) |E|
 - can we reduce time complexity? diameter?
 - what about message complexity?
- Proof?
- Correctness condition?

- Complexity: time = n-1; msg = (n-1) |E|
 - can we reduce time complexity? diameter?
 - what about message complexity?
- After round n-1, for each process i
 - dist_i = shortest distance from i₀
 - parent_i = predecessor on shortest path from i₀
- Proof?

- Invariant: after r rounds:
 - every process i has its dist (& parent) corresp to shortest path from i₀ to i with at most r edges
- Proof (by induction):
 - base case: trivial for r = 0
 - inductive step:
 - fix i, let p be pred on shortest path from i₀ with ≤ r edges
 - by ind hyp, after round r-1, dist_p and parent_p corresp to shortest path from i₀ to p with at most r-1 edges
 - dist_i(r) = dist_p(r-1) + w_{pi} correct by "optimal substructure"

- Another classic problem (lots of seq algs)
- Assume
 - weighted undirected graph (bidirectional comm)
 - all weights nonnegative
 - processes have UIDs
 - know weights of incident edges, bound on n
- Require
 - each process knows which incident edge is in MST

- Graph theory definitions (for undirected graphs)
 - tree: connected acyclic graph
 - spanning: property of a subgraph that it includes all nodes of a graph
 - forest: an acyclic graph (not necessarily connected)
 - component: a maximal connected subgraph
- Common strategy for computing MST:
 - start with trivial spanning forest (n isolated nodes)
 - repeatedly (n-1 times): for any component, add the minimumweight outgoing edge (MWOE) of that component to E
 - all components can choose simultaneously, except...

- Assume for now that weights are unique
 - implies there is a unique MST
 - components can choose concurrently
- GHS (Gallager Humblet Spira) algorithm
 - very influential (Dijkstra prize)
 - designed for asynchronous setting: simplified here
 - we will revisit it in asynchronous networks

GHS

- proceeds in phases, each with O(n) rounds
 - length of phases is fixed; this is what n is used for
- in each phase, graph is partitioned into components
 - phase k component has size at least 2^k
 - components identified by UID of leader
 - each component is a tree rooted at leader
 - every phase k+1 component contains of two or more phase k components

- GHS phases consists of multiple stages
 - leader finds MWOE of its component
 - broadcast search (via tree edges)
 - convergecast MWOE (via tree edges)
 - leader chooses minimum weight edge
 - combine components joined by MWOEs
 - inform nodes at either end of MWOEs of merger
 - choose new leader
 - larger UID adjacent to "shared" MWOE
 - broadcast to new (merged) component
- GHS terminates when no more outgoing edges

- GHS algorithm simplifed for synchronous setting
- Proof?
- Complexity?
 - time: O(n log n)
 - msg: O((n + |E|) log n)
 - actually O(n log n + |E|)

Where did we use synchrony?

- Leader election
- Breadth-first search
- Shortest paths
- Minimum spanning tree

We will see these algorithms again in the asynchronous setting.