6.852 Lecture 3

* Algorithms in general synchronous networks
(continued)

- breadth-first search

- broadcast, convergecast

- shortest paths

- minimum-weight spanning tree

Last lecture

* Lower bound for comparison-based leader
election in a ring

* |eader election in general synchronous networks

- flooding
- reducing message complexity
- simulations

Breadth-first search

e Assume

— strongly connected digraph, UIDs
- no knowledge of size, diameter of network
— distinguished source node g

* Required: breadth-first spanning tree

— spanning: contains every node

- breadth-first: node at distance d from iy appears at
depth d in tree

— output: parent of each node (except ij)

Breadth-first search

Breadth-first search

Breadth-first search

* “Mark” nodes as they get incorporated into tree
— initially only iy is marked
- round 1: iy sends “search” to out-nbrs

- every round: unmarked nodes that receive “search”

e marks self
» designates one process that sent “search” as parent
» send “search” to out-nbrs next round

Breadth-first search

* “Mark” nodes as they get incorporated into tree
— initially only iy is marked
- round 1: iy sends “search” to out-nbrs

- every round: unmarked nodes that receive “search”

e marks self
» designates one process that sent “search” as parent
» send “search” to out-nbrs next round

What state variables do we need?

Breadth-first search

Round 1 (start)

Breadth-first search

Round 1 (msgs)

Breadth-first search

Round 1 (trans)

Breadth-first search

Round 2 (start)

Breadth-first search

Round 2 (msgs)

Breadth-first search

Round 2 (trans)

Breadth-first search

Round 3 (start)

Breadth-first search

Round 3 (msgs)

Breadth-first search

Round 3 (trans)

Breadth-first search

Round 4 (start)

Breadth-first search

Round 4 (msgs)

Breadth-first search

Round 4 (trans)

Breadth-first search

Round 5 (start)

Breadth-first search

Round 5 (msgs)

Breadth-first search

Round 5 (trans)

Breadth-first search

* “Mark” nodes as they get incorporated into tree
— initially only iy is marked
- round 1: iy sends “search” to out-nbrs

- every round: unmarked nodes that receive “search”

e marks self
» designates one process that sent “search” as parent

» send “search” to out-nbrs next round
- need flag to keep track of when to send

« Complexity: time = diameter+1; msg = |E|

Breadth-first search

e Child pointers?
— easy with bidirectional communication

- what if not?
* message bit complexity

e Termination?

— with bidirectional communication?
* “convergecast”
— with unidirectional communication?

Applications of BFS

Message broadcast
- “piggyback” (watch message bit complexity)
- complexity: time = O(diameter); msg = O(n)
Global computation
— sum, or any accumulation: convergecast
- complexity: time = O(diameter); msg = O(n)
Leader election (without knowing diameter)
- everyone start BFS, finds max UID
- complexity: time = O(diam); msg = O(n |E|) or O(diam |E|)
Compute diameter

- all do BFS; convergecast to find height of each BFS tree;
convergecast to find max of all heights

Shortest paths

* Generalization of BFS
— assume weighted digraph, UIDs, i,

» weights represent some (communication) cost (known)
e all nodes know n (need for termination!)

- require shortest-paths tree rooted at i,

e paths should have min weight
* output parent, “distance” from root (by weight)

Shortest paths

Shortest paths

Shortest paths

Bellman-Ford (adapted from sequential alg)

- “relaxation algorithm”

- nodes maintain: dist, parent (best so far), round#
e initially 10 has dist O, all other «; parents all null

— each round all nodes:
» send dist to all out-nbrs
» relaxation: compute new dist = min(dist, min;(d;+w;;))
- update parent if dist changes
- stop after n-1 rounds

Shortest paths

Round 1 (start)

Shortest paths

Round 1 (msgs)

Shortest paths

Round 1 (trans)

Shortest paths

Round 2 (start)

Shortest paths

Round 2 (msgs)

Shortest paths

6 Round 2 (trans)

Shortest paths

6 Round 3 (start)

Shortest paths

Round 3 (msgs)

Shortest paths

Shortest paths

6 Round 4 (start)

Shortest paths

Shortest paths

Shortest paths

6 Round 5 (start)

Shortest paths

Shortest paths

Shortest paths

End configuration

Shortest paths

* Complexity: time = n-1; msg = (n-1) |E|
— can we reduce time complexity? diameter?
- what about message complexity?

 Proof?

Shortest paths

* Complexity: time = n-1; msg = (n-1) |E|
— can we reduce time complexity? diameter?
- what about message complexity?

 Proof?

 Correctness condition?

Shortest paths

* Complexity: time = n-1; msg = (n-1) |E|
— can we reduce time complexity? diameter?
- what about message complexity?

« After round n-1, for each process |
- dist; = shortest distance from i

- parent; = predecessor on shortest path from i
* Proof?

Shortest paths

e Invariant: after r rounds:

— every process i has its dist (& parent) corresp to
shortest path from iy to i with at most r edges
* Proof (by induction):
- base case: trivial forr =0
— inductive step:

e fix i, let p be pred on shortest path from iy with < r edges

« by ind hyp, after round r-1, dist, and parent, corresp to
shortest path from iy to p with at most r-1 edges

« distj(r) = dist,(r-1) + wy; correct by “optimal substructure”

Minimum spanning tree

* Another classic problem (lots of seq algs)
e Assume

- weighted undirected graph (bidirectional comm)
e all weights nonnegative
— processes have UIDs

- know weights of incident edges, bound on n
* Require

- each process knows which incident edge is in MST

Minimum spanning tree

* Graph theory definitions (for undirected graphs)

- tree: connected acyclic graph

- spanning: property of a subgraph that it includes all nodes of
a graph

- forest: an acyclic graph (not necessarily connected)
- component: a maximal connected subgraph

 Common strategy for computing MST:

- start with trivial spanning forest (n isolated nodes)

- repeatedly (n-1 times): for any component, add the minimum-
weight outgoing edge (MWOE) of that component to E

— all components can choose simultaneously, except...

Minimum spanning tree

Minimum spanning tree

* Assume for now that weights are unique
- implies there is a unique MST
- components can choose concurrently
 GHS (Gallager Humblet Spira) algorithm
- very influential (Dijkstra prize)
- designed for asynchronous setting: simplified here
— we will revisit it in asynchronous networks

Minimum spanning tree

 GHS

— proceeds in phases, each with O(n) rounds
* length of phases is fixed; this is what n is used for
- In each phase, graph is partitioned into components

 phase k component has size at least 2"
« components identified by UID of leader
e each component is a tree rooted at leader

 every phase k+1 component contains of two or more
phase k components

Minimum spanning tree

 GHS phases consists of multiple stages

- leader finds MWOE of its component

» broadcast search (via tree edges)
» convergecast MWOE (via tree edges)
 leader chooses minimum weight edge

- combine components joined by MWQOEs

 inform nodes at either end of MWOESs of merger

» choose new leader
- larger UID adjacent to “shared” MWOE
* broadcast to new (merged) component

 GHS terminates when no more outgoing edges

Minimum spanning tree

Minimum spanning tree

Minimum spanning tree

Minimum spanning tree

Minimum spanning tree

Minimum spanning tree

Minimum spanning tree

Minimum spanning tree

Minimum spanning tree

Minimum spanning tree

Minimum spanning tree

imum spannin

Minimum spanning tree

Minimum spanning tree

L o9
— 1

Minimum spanning tree

Minimum spanning tree

Minimum spanning tree

Minimum spanning tree

* GHS algorithm simplifed for synchronous setting
* Proof?
» Complexity?

- time: O(n log n)

- msg: O((n + |E|) log n)
e actually O(n log n + |E|)

Where did we use synchrony?

Leader election
Breadth-first search

Shortest paths
Minimum spanning tree

We will see these algorithms again
In the asynchronous setting.

