6.852 Lecture 3

* Algorithms in general synchronous networks
(continued)

- breadth-first search

- broadcast, convergecast

- shortest paths

- minimum-weight spanning tree



Last lecture

* Lower bound for comparison-based leader
election in a ring

* |eader election in general synchronous networks

- flooding
- reducing message complexity
- simulations



Breadth-first search

e Assume

— strongly connected digraph, UIDs
- no knowledge of size, diameter of network
— distinguished source node g

* Required: breadth-first spanning tree

— spanning: contains every node

- breadth-first: node at distance d from iy appears at
depth d in tree

— output: parent of each node (except ij)



Breadth-first search
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Breadth-first search

* “Mark” nodes as they get incorporated into tree
— initially only iy is marked
- round 1: iy sends “search” to out-nbrs

- every round: unmarked nodes that receive “search”

e marks self
» designates one process that sent “search” as parent
» send “search” to out-nbrs next round



Breadth-first search

* “Mark” nodes as they get incorporated into tree
— initially only iy is marked
- round 1: iy sends “search” to out-nbrs

- every round: unmarked nodes that receive “search”

e marks self
» designates one process that sent “search” as parent
» send “search” to out-nbrs next round

What state variables do we need?




Breadth-first search

Round 1 (start)



Breadth-first search

Round 1 (msgs)



Breadth-first search

Round 1 (trans)



Breadth-first search

Round 2 (start)



Breadth-first search

Round 2 (msgs)



Breadth-first search

Round 2 (trans)



Breadth-first search

Round 3 (start)



Breadth-first search

Round 3 (msgs)



Breadth-first search

Round 3 (trans)



Breadth-first search

Round 4 (start)



Breadth-first search

Round 4 (msgs)



Breadth-first search

Round 4 (trans)



Breadth-first search

Round 5 (start)



Breadth-first search

Round 5 (msgs)



Breadth-first search

Round 5 (trans)



Breadth-first search

* “Mark” nodes as they get incorporated into tree
— initially only iy is marked
- round 1: iy sends “search” to out-nbrs

- every round: unmarked nodes that receive “search”

e marks self
» designates one process that sent “search” as parent

» send “search” to out-nbrs next round
- need flag to keep track of when to send

« Complexity: time = diameter+1; msg = |E|



Breadth-first search

e Child pointers?
— easy with bidirectional communication

- what if not?
* message bit complexity

e Termination?

— with bidirectional communication?
* “convergecast”
— with unidirectional communication?



Applications of BFS

Message broadcast
- “piggyback” (watch message bit complexity)
- complexity: time = O(diameter); msg = O(n)
Global computation
— sum, or any accumulation: convergecast
- complexity: time = O(diameter); msg = O(n)
Leader election (without knowing diameter)
- everyone start BFS, finds max UID
- complexity: time = O(diam); msg = O(n |E|) or O( diam |E|)
Compute diameter

- all do BFS; convergecast to find height of each BFS tree;
convergecast to find max of all heights



Shortest paths

* Generalization of BFS
— assume weighted digraph, UIDs, i,

» weights represent some (communication) cost (known)
e all nodes know n (need for termination!)

- require shortest-paths tree rooted at i,

e paths should have min weight
* output parent, “distance” from root (by weight)



Shortest paths
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Shortest paths

Bellman-Ford (adapted from sequential alg)

- “relaxation algorithm”

- nodes maintain: dist, parent (best so far), round#
e initially 10 has dist O, all other «; parents all null

— each round all nodes:
» send dist to all out-nbrs
» relaxation: compute new dist = min(dist, min;(d;+w;;))
- update parent if dist changes
- stop after n-1 rounds



Shortest paths

Round 1 (start)



Shortest paths

Round 1 (msgs)



Shortest paths

Round 1 (trans)



Shortest paths

Round 2 (start)



Shortest paths

Round 2 (msgs)



Shortest paths

6 Round 2 (trans)



Shortest paths

6 Round 3 (start)



Shortest paths

Round 3 (msgs)



Shortest paths




Shortest paths

6 Round 4 (start)



Shortest paths
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Shortest paths

6 Round 5 (start)



Shortest paths




Shortest paths




Shortest paths

End configuration



Shortest paths

* Complexity: time = n-1; msg = (n-1) |E|
— can we reduce time complexity? diameter?
- what about message complexity?

 Proof?



Shortest paths

* Complexity: time = n-1; msg = (n-1) |E|
— can we reduce time complexity? diameter?
- what about message complexity?

 Proof?

 Correctness condition?



Shortest paths

* Complexity: time = n-1; msg = (n-1) |E|
— can we reduce time complexity? diameter?
- what about message complexity?

« After round n-1, for each process |
- dist; = shortest distance from i

- parent; = predecessor on shortest path from i
* Proof?



Shortest paths

e Invariant: after r rounds:

— every process i has its dist (& parent) corresp to
shortest path from iy to i with at most r edges
* Proof (by induction):
- base case: trivial forr =0
— inductive step:

e fix i, let p be pred on shortest path from iy with < r edges

« by ind hyp, after round r-1, dist, and parent, corresp to
shortest path from iy to p with at most r-1 edges

« distj(r) = dist,(r-1) + wy; correct by “optimal substructure”



Minimum spanning tree

* Another classic problem (lots of seq algs)
e Assume

- weighted undirected graph (bidirectional comm)
e all weights nonnegative
— processes have UIDs

- know weights of incident edges, bound on n
* Require

- each process knows which incident edge is in MST



Minimum spanning tree

* Graph theory definitions (for undirected graphs)

- tree: connected acyclic graph

- spanning: property of a subgraph that it includes all nodes of
a graph

- forest: an acyclic graph (not necessarily connected)
- component: a maximal connected subgraph

 Common strategy for computing MST:

- start with trivial spanning forest (n isolated nodes)

- repeatedly (n-1 times): for any component, add the minimum-
weight outgoing edge (MWOE) of that component to E

— all components can choose simultaneously, except...



Minimum spanning tree



Minimum spanning tree

* Assume for now that weights are unique
- implies there is a unique MST
- components can choose concurrently
 GHS (Gallager Humblet Spira) algorithm
- very influential (Dijkstra prize)
- designed for asynchronous setting: simplified here
— we will revisit it in asynchronous networks



Minimum spanning tree

 GHS

— proceeds in phases, each with O(n) rounds
* length of phases is fixed; this is what n is used for
- In each phase, graph is partitioned into components

 phase k component has size at least 2"
« components identified by UID of leader
e each component is a tree rooted at leader

 every phase k+1 component contains of two or more
phase k components



Minimum spanning tree

 GHS phases consists of multiple stages

- leader finds MWOE of its component

» broadcast search (via tree edges)
» convergecast MWOE (via tree edges)
 leader chooses minimum weight edge

- combine components joined by MWQOEs

 inform nodes at either end of MWOESs of merger

» choose new leader
- larger UID adjacent to “shared” MWOE
* broadcast to new (merged) component

 GHS terminates when no more outgoing edges



Minimum spanning tree
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Minimum spanning tree

* GHS algorithm simplifed for synchronous setting
* Proof?
» Complexity?

- time: O(n log n)

- msg: O( (n + |E|) log n)
e actually O(n log n + |E|)



Where did we use synchrony?

Leader election
Breadth-first search

Shortest paths
Minimum spanning tree

We will see these algorithms again
In the asynchronous setting.




