

6.852 Lecture 3

● Algorithms in general synchronous networks
(continued)
– breadth-first search

– broadcast, convergecast

– shortest paths

– minimum-weight spanning tree

Last lecture

● Lower bound for comparison-based leader
election in a ring

● Leader election in general synchronous networks
– flooding

– reducing message complexity

– simulations

Breadth-first search

● Assume
– strongly connected digraph, UIDs

– no knowledge of size, diameter of network

– distinguished source node i0
● Required: breadth-first spanning tree

– spanning: contains every node

– breadth-first: node at distance d from i0 appears at
depth d in tree

– output: parent of each node (except i0)

Breadth-first search

1

5

4
3

2

6

Breadth-first search

1

5

4
3

2

6

Breadth-first search

● “Mark” nodes as they get incorporated into tree

– initially only i0 is marked

– round 1: i0 sends “search” to out-nbrs

– every round: unmarked nodes that receive “search”
● marks self
● designates one process that sent “search” as parent
● send “search” to out-nbrs next round

Breadth-first search

● “Mark” nodes as they get incorporated into tree

– initially only i0 is marked

– round 1: i0 sends “search” to out-nbrs

– every round: unmarked nodes that receive “search”
● marks self
● designates one process that sent “search” as parent
● send “search” to out-nbrs next round

What state variables do we need?

Breadth-first search

1

5

4
3

2

6

Round 1 (start)

Breadth-first search

1

5

4
3

2

6

Round 1 (msgs)

s

Breadth-first search

1

5

4
3

2

6

Round 1 (trans)

s

Breadth-first search

1

5

4
3

2

6

Round 2 (start)

Breadth-first search

1

5

4
3

2

6

Round 2 (msgs)

s

s

??

Breadth-first search

1

5

4
3

2

6

Round 2 (trans)

s

s

Breadth-first search

1

5

4
3

2

6

Round 3 (start)

Breadth-first search

1

5

4
3

2

6

Round 3 (msgs)

s

s

s

s

s

Breadth-first search

1

5

4
3

2

6

Round 3 (trans)

s

s

s

s

s

Breadth-first search

1

5

4
3

2

6

Round 4 (start)

Breadth-first search

1

5

4
3

2

6

Round 4 (msgs)

s
s

s

Breadth-first search

1

5

4
3

2

6

Round 4 (trans)

s
s

s

Breadth-first search

1

5

4
3

2

6

Round 5 (start)

Breadth-first search

1

5

4
3

2

6

Round 5 (msgs)

Breadth-first search

1

5

4
3

2

6

Round 5 (trans)

Breadth-first search

● “Mark” nodes as they get incorporated into tree

– initially only i0 is marked

– round 1: i0 sends “search” to out-nbrs

– every round: unmarked nodes that receive “search”
● marks self
● designates one process that sent “search” as parent
● send “search” to out-nbrs next round

– need flag to keep track of when to send

● Complexity: time = diameter+1; msg = |E|

Breadth-first search

● Child pointers?
– easy with bidirectional communication

– what if not?
● message bit complexity

● Termination?
– with bidirectional communication?

● “convergecast”

– with unidirectional communication?

Applications of BFS
● Message broadcast

– “piggyback” (watch message bit complexity)

– complexity: time = O(diameter); msg = O(n)

● Global computation
– sum, or any accumulation: convergecast

– complexity: time = O(diameter); msg = O(n)

● Leader election (without knowing diameter)
– everyone start BFS, finds max UID

– complexity: time = O(diam); msg = O(n |E|) or O(diam |E|)

● Compute diameter
– all do BFS; convergecast to find height of each BFS tree;

convergecast to find max of all heights

Shortest paths

● Generalization of BFS

– assume weighted digraph, UIDs, i0
● weights represent some (communication) cost (known)
● all nodes know n (need for termination!)

– require shortest-paths tree rooted at i0
● paths should have min weight
● output parent, “distance” from root (by weight)

Shortest paths

1

5

4
3

2

6

7

8
6

4

3

9

2

511

10

1

Shortest paths

1

5

4
3

2

6

3

0

7

8
6

4

3

9

2

511

10

1

10

6

2

9

Shortest paths

● Bellman-Ford (adapted from sequential alg)
– “relaxation algorithm”

– nodes maintain: dist, parent (best so far), round#
● initially i0 has dist 0, all other ∞; parents all null

– each round all nodes:
● send dist to all out-nbrs
● relaxation: compute new dist = min(dist, minj(dj+wji))

– update parent if dist changes

– stop after n-1 rounds

Shortest paths

1

5

4
3

2

6

∞

0

7

8
6

4

3

9

2

511

10

1

∞

∞

∞

∞

Round 1 (start)

Shortest paths

1

5

4
3

2

6

∞

0

7

8
6

4

3

9

2

511

10

1

∞

∞

∞

∞

Round 1 (msgs)

∞
∞

∞

∞

∞
∞

∞

∞
∞

0 0

Shortest paths

1

5

4
3

2

6

∞

0

7

8
6

4

3

9

2

511

10

1

11

∞

2

∞

Round 1 (trans)

∞
∞

∞

∞

∞
∞

∞

∞
∞

0 0

Shortest paths

1

5

4
3

2

6

∞

0

7

8
6

4

3

9

2

511

10

1

11

∞

2

∞

Round 2 (start)

Shortest paths

1

5

4
3

2

6

∞

0

7

8
6

4

3

9

2

511

10

1

11

∞

2

∞

Round 2 (msgs)

∞
∞

2

∞

2∞

∞

∞
11

0 0

Shortest paths

1

5

4
3

2

6

3

0

7

8
6

4

3

9

2

511

10

1

11

6

2

19

Round 2 (trans)

∞
∞

2

∞

2∞

∞

∞
11

0 0

Shortest paths

1

5

4
3

2

6

3

0

7

8
6

4

3

9

2

511

10

1

11

6

2

19

Round 3 (start)

Shortest paths

1

5

4
3

2

6

3

0

7

8
6

4

3

9

2

511

10

1

11

6

2

19

Round 3 (msgs)

66
2

3

23

3

19 11
0 0

Shortest paths

1

5

4
3

2

6

3

0

7

8
6

4

3

9

2

511

10

1

10

6

2

9

Round 3 (trans)

66
2

3

23

3

19 11
0 0

Shortest paths

1

5

4
3

2

6

3

0

7

8
6

4

3

9

2

511

10

1

10

6

2

9

Round 4 (start)

Shortest paths

1

5

4
3

2

6

3

0

7

8
6

4

3

9

2

511

10

1

10

6

2

9

Round 4 (msgs)

66
2

3

23

3

9 10
0 0

Shortest paths

1

5

4
3

2

6

3

0

7

8
6

4

3

9

2

511

10

1

10

6

2

9

Round 4 (trans)

66
2

3

23

3

9 10
0 0

Shortest paths

1

5

4
3

2

6

3

0

7

8
6

4

3

9

2

511

10

1

10

6

2

9

Round 5 (start)

Shortest paths

1

5

4
3

2

6

3

0

7

8
6

4

3

9

2

511

10

1

10

6

2

9

Round 5 (msgs)

66
2

3

23

3

9 10
0 0

Shortest paths

1

5

4
3

2

6

3

0

7

8
6

4

3

9

2

511

10

1

10

6

2

9

Round 5 (trans)

66
2

3

23

3

9 10
0 0

Shortest paths

1

5

4
3

2

6

3

0

7

8
6

4

3

9

2

511

10

1

10

6

2

9

End configuration

Shortest paths

● Complexity: time = n-1; msg = (n-1) |E|
– can we reduce time complexity? diameter?

– what about message complexity?

● Proof?

Shortest paths

● Complexity: time = n-1; msg = (n-1) |E|
– can we reduce time complexity? diameter?

– what about message complexity?

● Proof?
● Correctness condition?

Shortest paths

● Complexity: time = n-1; msg = (n-1) |E|
– can we reduce time complexity? diameter?

– what about message complexity?

● After round n-1, for each process i

– disti = shortest distance from i0

– parenti = predecessor on shortest path from i0
● Proof?

Shortest paths

● Invariant: after r rounds:
– every process i has its dist (& parent) corresp to

shortest path from i0 to i with at most r edges

● Proof (by induction):
– base case: trivial for r = 0

– inductive step:
● fix i, let p be pred on shortest path from i0 with ≤ r edges

● by ind hyp, after round r-1, distp and parentp corresp to
shortest path from i0 to p with at most r-1 edges

● disti(r) = distp(r-1) + wpi correct by “optimal substructure”

Minimum spanning tree

● Another classic problem (lots of seq algs)
● Assume

– weighted undirected graph (bidirectional comm)
● all weights nonnegative

– processes have UIDs

– know weights of incident edges, bound on n

● Require
– each process knows which incident edge is in MST

Minimum spanning tree

● Graph theory definitions (for undirected graphs)
– tree: connected acyclic graph

– spanning: property of a subgraph that it includes all nodes of
a graph

– forest: an acyclic graph (not necessarily connected)

– component: a maximal connected subgraph

● Common strategy for computing MST:
– start with trivial spanning forest (n isolated nodes)

– repeatedly (n-1 times): for any component, add the minimum-
weight outgoing edge (MWOE) of that component to E

– all components can choose simultaneously, except...

Minimum spanning tree

b

c

a

1

1

1

Minimum spanning tree

● Assume for now that weights are unique
– implies there is a unique MST

– components can choose concurrently

● GHS (Gallager Humblet Spira) algorithm
– very influential (Dijkstra prize)

– designed for asynchronous setting: simplified here

– we will revisit it in asynchronous networks

Minimum spanning tree

● GHS
– proceeds in phases, each with O(n) rounds

● length of phases is fixed; this is what n is used for

– in each phase, graph is partitioned into components
● phase k component has size at least 2k

● components identified by UID of leader
● each component is a tree rooted at leader
● every phase k+1 component contains of two or more

phase k components

Minimum spanning tree

● GHS phases consists of multiple stages
– leader finds MWOE of its component

● broadcast search (via tree edges)
● convergecast MWOE (via tree edges)
● leader chooses minimum weight edge

– combine components joined by MWOEs
● inform nodes at either end of MWOEs of merger
● choose new leader

– larger UID adjacent to “shared” MWOE
● broadcast to new (merged) component

● GHS terminates when no more outgoing edges

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

⊥

⊥

⊥

⊥

9

11

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

5

11

9

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

ok

ok

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

⊥

⊥

⊥

⊥

⊥

⊥

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

⊥

⊥ ⊥

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

⊥

Minimum spanning tree

e

h

f
k

i

g
d

b

c

a

j

12

0

5

8

1

2

3

6
11

13

10

7

9

4

Minimum spanning tree

● GHS algorithm simplifed for synchronous setting
● Proof?
● Complexity?

– time: O(n log n)

– msg: O((n + |E|) log n)
● actually O(n log n + |E|)

Where did we use synchrony?

● Leader election
● Breadth-first search
● Shortest paths
● Minimum spanning tree

We will see these algorithms again
in the asynchronous setting.

