
6.852 Lecture 24, part 1

● Paxos (continued

● Reading:
– Lamport: The Part-Time Parliament

● Part 2: Self-stabilization

Paxos consensus algorithm

● Consensus in asynchronous network
– impossible if a single process may fail

– need to solve for real applications
● weaken requirements

● Strategy: “safe” protocol, contingent termination
– guarantee validity and agreement always

– guarantee termination if system “stabilizes”
● no more failures, recoveries, message losses
● time for message delivery/process steps within “normal” bounds

– termination should be fast when system is stable
● only need system to be stable long enough to terminate

Paxos consensus protocol

● Paxos algorithm implements replicated state machine
– tolerates stopping failures/recoveries, message loss/duplication

● Heart of Paxos algorithm is “synod” consensus protocol
– use consensus to agree on sequence of steps

● as in Herlihy's wait-free universal construction from consensus

Paxos consensus protocol
● Ballot: (b,d) ∈ BId × V ∪ { ⊥ }

– an attempt to reach consensus

– V is consensus domain, d is “decree” (a value or nothing yet)

– ballot created by any process at any time (restrict later)
● new ballot must have new id, initially no associated value (i.e., ⊥)
● value assigned later, satisfying certain conditions

– ballot ids totally ordered

– process may vote for or abstain from a ballot (but not both)
● can abstain from sets of ballots, including ones not yet initiated

– ballot succeeds if a write quorum votes for it

– ballot is dead if a read quorum abstains from it
● read quorum has nonempty intersection with every write quorum

Paxos consensus protocol

● Each ballot processed in three phases of messages
– initiate new ballot, choose decree for ballot (need read quorum)

– try to get ballot to succeed (need write quorum to vote)

– let everyone know if successful

● Initiator “drives” processing of ballot
– other processes only respond to messages from initiator

● Anyone can ignore/neglect any ballot at any time
– only affects progress

● Many ballots can be processed concurrently
– ballots can be initiated at any time

– ballots with larger ids are “later”

Paxos consensus protocol

● Phase 1:
– NextBallot(b), where b not previously used ballot id

● sent by some process p to some read quorum (or more)

– LastVote(b,v), sent by q to p in reply to NextBallot(b) from p
● v is vote by q with largest ballot id smaller than b (null if none)
● q promises not to vote for (i.e., abstains from) ballots with ids

between v's and b's (must keep track of abstentions).

– p selects value when it gets a read quorum of responses
● decree of latest ballot that had a vote (among LastVote responses)
● if all LastVote responses are null, choose own decree

Paxos consensus protocol

● Phase 2:
– BeginBallot(b,d), where d is determined in Phase 1

● sent by p to a write quorum (or more)

– Voted(b,q), sent by q to p in reply to BeginBallot(b,d) from p
● q must not have abstained from b (by LastVote for some other ballot)

– p decides on d if it gets a write quorum of votes (i.e., responses)

● Phase 3
– Success(d), sent by p to everyone

● p can terminate after sending if channels are reliable

– any process decides on d upon receiving Success(d) from anyone
● can it terminate if channels are reliable?

Paxos consensus protocol

● Communication pattern for a ballot
– like 3-phase commit

initiate ballot

select decree

succeed

Phase 1, collect abstention information

Phase 2, collect votes

Phase 3, propagate decision

Paxos consensus protocol

● Recall:
– ballot succeeds if a write quorum votes for it

– ballot is dead if a read quorum abstains from it

– read quorum has nonempty intersection with every write quorum
● no ballot can be both dead and successful

● Lemma: For initiated ballots (b,d) and (b',d'), if b > b',
then either d = d' or b' is dead.

Modifying the ** condition for assigning
ballot values

● Instead of checking:
 ** For every b' < b, either val(b') = v or b' is dead.
● Check the apparently-weaker condition:

 *** Either:
 Every b' < b is dead, or
 there exists b' < b with val(b') = val(b), and such that every b'' with

b' < b'' < b is dead.

• *** is easier to check in a distributed algorithm (will show how).
● And *** implies **, by easy induction on the number of steps in an

execution.

Ensuring ***
*** Either every b' < b is dead, or there exists b' < b with val(b') =

val(b), such that every b'' with b' < b'' < b is dead.
• Phase 1:

– Originator process i tells other processes the new ballot number b.
– Each recipient j abstains from all smaller-numbered ballots it hasn’t

yet voted for.
– Each j sends back to i:

• The largest ballot number < b that it has ever voted for, if any, together
with its value v.

• Else a message saying there is no such ballot.
– When originator i collects this information from a read-quorum R, it

assigns a value v to ballot b:
• If anyone in R says it voted for a ballot < b, then v = the value

associated with the largest-numbered of these ballots.
• If not, v = any initial value.

• Claim this choice satisfies ***:

Ensuring ***

• *** Either every b' < b is dead, or there exists b' < b with val(b') =
val(b), such that every b'' with b' < b'' < b is dead.

● Why does this choice satisfy ***?
● Case 1: Someone in R says it voted for a ballot < b.

– Say b' is the largest such ballot number.
– Then everyone in R has abstained from all ballots between b' and b.
– So, choosing val(b) = val(b') ensures the second clause of ***.

● Case 2: Everyone in R says it did not vote for a ballot < b.
– Then everyone in R has abstained from all ballots < b, ensuring they are all

dead.
– Satisfies the first clause of ***.

Paxos consensus protocol

● Protocol requires:
– ballot id for new ballot has never been used

– not voting for ballots previously abstained from

– remembering previous votes (for LastVote)

● Simplify by restricting processes further:
– ballot id is sequence number plus process id (to break ties)

– remember largest b sent in LastVote(b,v)
● never vote for ballots with ids less than b
● also ignore NextBallot(b') when b' ≤ b

– remember only latest ballot voted for (ballot id and decree)
● send in response to NextBallot (if not ignored)

Liveness

● To guarantee termination when the system stabilizes, we must
restrict its nondeterminism.
– say that process initiates ballot in response to BallotTrigger

● Most importantly, must restrict when BallotTrigger so that, after
stabilization:
– It asks only one process to start ballots (leader).
– It doesn’t tell the leader to start new ballots too often---allows enough time

for ballot to complete.
● E.g., BallotTrigger might:

– Use knowledge of “normal case” time bounds to try to detect who is failed.
– Choose smallest-index non-failed process as leader (refresh periodically).
– Tell the leader to try a new ballot every so often---allowing enough “normal

case” message delays to finish the protocol.
● Note the BallotTrigger uses time---not purely asynchronous.
● But we know we can’t solve the problem otherwise.
● Algorithm tolerates inaccuracies in BallotTrigger: If it “guesses

wrong” about failures or delays, termination may be delayed, but
safety properties are still guaranteed.

Replicated state machines

● Paper also deals with repeated consensus, in particular, on a
sequence of operations for a replicated state machine.

● Use infinitely many instances of Paxos to agree on first operation,
second, third,…

● Strategy similar to Herlihy’s universal construction, which uses
repeated consensus to decide on successive operations for an
atomic object.

● Lamport’s paper also includes various optimizations, LTTR.
● Considerable follow-on work, engineering Paxos to work for

maintaining real data.
– Disk Paxos
– HP, Microsoft, Google,…

