6.852 Lecture 22

* Techniques for highly concurrent objects (continued)

- “lazy” synchronization
—illustrate on list-based sets, apply to other data structures

* Transactional memory
» Reading:
- Herliny-Shavit Chapter 8 (Chapter 9 in draft version)

- Herlihy, Luchangco, Moir, Scherer paper
- Dice, Shalev, Shavit paper

Review

* Techniques

- coarse-grained locking
 simple: works well for low contention
- fine-grained locking
« allows more concurrency, but also deadlock
e greater time and space overhead (due to more locks)
* simple two-phase policy guarantees atomicity (doesn't help list)
» hand-over-hand locking
e optimistic locking
- lock-free techniques
 separate “logical” and “physical” deletion
 “announce” intention to facilitate helping (to guarantee progress)

Review

» Optimistic locking
- search down list without locking; lock appropriate nodes

- verify that nodes are adjacent and in list (validation)

e requires traversing the list again

e retry if validation fails
— good if validation typically succeeds

 note that the list can have changed between locking and validation
- traversal is wait-free, but

» must traverse list twice (why?)

» even contains must lock node (is this true?)
— contains is typically by far the most common operation

Lazy list algorithm

e |[dea: use “mark” from lock-free list to avoid retraversal

- “lazy” removal: first mark node, then splice around it

* like lock-free list, except mark can be separate from next pointer
- still locks node to be removed and predecessor
- validation: check nodes are adjacent and unmarked

« unmarked implies in list: no need to retraverse
* much shorter critical section

Lazy Removal

(I [3= 3= 313~ 15

Lazy Removal

Present in list

Lazy Removal

Logically deleted

Lazy Removal

Physically deleted

Lazy list algorithm

* Observation: contains(x) doesn't need to lock/validate

- find first node with key = x

- return true iff unmarked and key = x
» what if some other node with key = x is in the list?

Lazy list algorithm

Lazy list algorithm

Lazy list algorithm

Lazy list algorithm

(33~ CI3~ C5—

L

Lazy list algorithm

(33~ CI3- C3—

d

L

Lazy list algorithm

(33~ CI3- C3—

L

Lazy list algorithm

(33 CI3~ C3—

L

Lazy list algorithm

(B~CIY) (C3- B~
L

Lazy list algorithm

Lazy list algorithm

SER(CIND ERdC En
L

Lazy list algorithm

(B~ %}@3—»
Lo

Lazy list algorithm

=

(] [OERNGIERS

Q Is this okay?

Lazy list algorithm

(3~ ER3— 3

L

Lazy list algorithm

(~ED @\‘ED}»
Lo

Lazy list algorithm
7 E

0%

Lazy list algorithm

aik
3 el el -

Q Is this okay?

Lazy list algorithm

» Serializing contains(x) that returns false

- if node found has key > x

* when node.key is read?

e when pred.next is read?

» when pred is marked (if it is marked)?
- if node with key = x is marked

» when mark is read?
e when pred.next is read?
» when mark is set?

Lazy list algorithm

» Serializing contains(x) that returns false

- if node found has key > x

* when node.key is read?

e when pred.next is read?

» when pred is marked (if it is marked)?
- if node with key = x is marked

» when mark is read?
e when pred.next is read?
» when mark is set?

Can we do this for the optimistic list?

Review

* |_ock-free algorithm

- “mark” nodes before removing from the list
» marking is logical deletion
- don't modify marked nodes
e use CAS, mark and next pointer in same word
- if encounter a marked node, help
e physically delete node from list
—if CAS falils, retry operation (except if you marked the node)

Lock-free list with wait-free contains

» add and remove just like lock-free list
» contains does not help, does not retry

—just like in lazy list

Application of list techniques

* Trees
« SKip lists
- multiple layers of links

- list at each layer is sublist of layer below

- logarithmic expected search time if each list has half elements
of next lower level

* probabilistic guarantees

T T

\AA A4

[
L
v
2]
N
e
L
YVYY
[~
L
vy
:
-
[
L

Summary

* Reduce granularity

* Two-phase locking

» Avoid deadlock by ordering locks

* Optimistic techniques

» Separate “logical” and “physical” changes

» Enable helping (by “announcing” intention)

* Optimize for the common case (usually reading)

—analyze read-only operations separately
* Maintain invariants

* \Weaken requirements: progress, invariants

Other techniques/issues

» Pointer swinging
- maintain extra level of indirection
- current version of object is never modified
- to modify object: copy, modify copy, then “swing pointer”
- okay for small objects
- vary granularity to trade between efficiency and simplicity
- beware of ABA problem (garbage collection helps here)
- only lets you change one object at a time

» Keep copies
- maintain an indicator of which is copy is “current”
- like pointer swinging with pointer in reverse direction

Other techniques/issues

» Revocable locks/ownership records

- like locks, but others can take away locks

 they may undo your changes (aka rollback), or else help you finish
* must leave undo or announcement info

- contention can lead to “thrashing”
» Keep logs
- remember operations done, derive state

» keep recent version to reduce overhead
e can roll back by truncating log

— like universal construction from consensus

Other techniques/issues

» Contention management
— gueuing
- backoff
— priorities
» Composability
- build algorithms/systems hierarchically
—very hard with locks
* Weaker progress guarantees
- obstruction-freedom
» Adaptive algorithms

- overhead depends on actual rather than potential contention

Problems with locks

* Reduce concurrency

» Possibility of deadlock
» Convoying

* Priority inversion

» Difficult to manage

- everyone must follow locking convention; hard to enforce/check

* Not composable

Problems with CAS or LL/SC

» Access only single location

* ABA problem (for CAS)

» Spurious failures (for LL/SC)

» Typically complex algorithms

» Helping interacts badly caching

» Contention management can break progress guarantees
» Difficult to compose (because of single-location limit)

- bank transfer example

Transactional memory

e Raise level of abstraction

— programmer specifies atomicity boundaries: transactions
- system guarantees atomicity

e commits if it can
e aborts if not (roll back any changes)
e possibly retry on abort
- system manages contention (possibly separable functionality)

- nested transactions compose

e but large transactions may not commit

Transactional memory

* begin transaction
e commit
» “acquire”/"open” objects
- differentiate reading and writing
e validate

* maintain roll-back functionality to support abort
 detect conflicts

- contention manager resolves conflict

* retry policy

Transactional memory

* Herlihy and Moss (1993) proposed hardware TM

- hardware; exploits cache coherence protocol
- platform-dependent limits

» Shavit/Touitou (1995) proposed software TM
- lock-free, not adaptive, very expensive (not practical)
» Revisited by many in early 2000s

-DSTM (PODC 2003), OSTM (OOPSLA 2003), then lots more
- SLE (2001), TCC (2004), then lots more
- very active area (e.g., several new workshops)

Transactional memory

» Object-based vs word-based
« Hardware vs software (or combination)

 Blocking vs nonblocking

- “user” blocking vs “system” blocking
— obstruction-freedom vs lock-freedom

» Contention management

* Encounter-time vs commit-time acquire

» Eager vs lazy conflict detection (“zombie” transactions)
* Undo log vs write set

* Visible vs invisible vs “semivisible” readers

* Feature interaction: i/o, exceptions, conditional waiting,
privatization, strong vs weak atomicity

Using transactional memory

» Simplified interface: atomic blocks

—atomic { code }
—automatic retry, obstruction-free progress guarantee

Q.enqueue(x) Q.dequeue()
node = new Node(x) atomic{
node.next := null if Q.head = null then
atomic{ return null
oldtail = Q.tail else
Q.tail := node node := Q.head
if oldtail = null then Q.head := node.next
Q.head := node if node.next = null then
else Q.tail := null
oldtail.next := node return node.item

} }

Implementing transactional memory

 Assume we can intercept access to objects

- for object-based TM, exploit object infrastructure
- for word-based TM, need compiler (or run-time) help

 TM implementation maintains shared metadata

- with object for object-based TM, plus an additional small word for
each transaction (could be just for active transactions)

—for word-based TM, read sets and write sets

* No hardware support (use CAS)
* Different progress conditions

Dynamic STM (DSTM)

- object-based (Java'™ library)

* no locks (obstruction-free)

» supports dynamic allocation and access
» separable contention management

* pluggable implementations (2" release)

&

xaction

new objec

old object

aborted

&

xaction - - ‘ xaction
aborte active
old object old object

=D

A
xaction - - ‘ xaction
aborte active
old object old object

OO0 @

&

xaction

commit

new objec

old object

&

xaction _ xaction
_ commlt‘ : active
new objec new objec

old object old object

_ 1

xaction _ xaction
_ commlt‘ : active
new objec new objec

old object old object

&

xaction

active

new objec

old object

xaction
field 1

shadow 1
fleld 2

shadow 2
fleld 3
shadow 3

commit

xaction
field 1

shadow 1
fleld 2

shadow 2
fleld 3
shadow 3

commit

active ‘

xaction ‘conwnk‘

active

xaction
field 1

shadow 1
fleld 2

shadow 2
fleld 3
shadow 3

Transactional Locking Il (TL2)

» Best (or one of the best) performing STM

—also other nice properties beyond the scope of this lecture
 Lock-based, word-based STM

—locks only held during commit phase (not executing user code)
» Uses global version number (potential bottleneck)

- updated by each writing transaction (but could relax this)
» Every location also has version number

—transaction that last wrote it

Transactional Locking Il (TL2)

* Read global version counter
— store locally: rv (for read version)
* Run transaction “speculatively”

- track which locations are read and written

- when location first accessed, check version counter

— write values into write set

- read values into read set (so transaction gets consistent reads)

« if value was written by transaction, get value from write set

At commit

- lock write set

- increment global version counter
- validate read set

— write-back values

- release locks

Combining hardware and software

» Hardware-assisted transactional memory

- new required hardware
— hardware support can accelerate implementation

* Hybrid transactional memory
- STM that can work with HTM

» hardware transactions and software transactions must “play nicely”
 can be used now (with no hardware support)
 can exploit HTM support with little change

- phased transactional memory
e can switch dynamically between using STM and HTM

Next time

* Asynchronous networks vs asynchronous shared memory
* Agreement in asynchronous networks

- Paxos algorithm
* Reading:

- Lamport paper: The Part-Time Parliament

- Lynch, Chapter 17

