
6.852 Lecture 22

● Techniques for highly concurrent objects (continued)
– “lazy” synchronization

– illustrate on list-based sets, apply to other data structures

● Transactional memory

● Reading:
– Herlihy-Shavit Chapter 8 (Chapter 9 in draft version)

– Herlihy, Luchangco, Moir, Scherer paper

– Dice, Shalev, Shavit paper



Review
● Techniques

– coarse-grained locking
● simple: works well for low contention

– fine-grained locking
● allows more concurrency, but also deadlock
● greater time and space overhead (due to more locks)
● simple two-phase policy guarantees atomicity (doesn't help list)
● hand-over-hand locking
● optimistic locking

– lock-free techniques
● separate “logical” and “physical” deletion
● “announce” intention to facilitate helping (to guarantee progress)



Review
● Optimistic locking

– search down list without locking; lock appropriate nodes

– verify that nodes are adjacent and in list (validation)
● requires traversing the list again
● retry if validation fails

– good if validation typically succeeds
● note that the list can have changed between locking and validation

– traversal is wait-free, but
● must traverse list twice (why?)
● even contains must lock node (is this true?)

– contains is typically by far the most common operation



Lazy list algorithm

● Idea: use “mark” from lock-free list  to avoid retraversal
– “lazy” removal: first mark node, then splice around it

● like lock-free list, except mark can be separate from next pointer

– still locks node to be removed and predecessor

– validation: check nodes are adjacent and unmarked
● unmarked implies in list: no need to retraverse
● much shorter critical section
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Lazy Removal
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Lazy list algorithm

● Observation: contains(x) doesn't need to lock/validate
– find first node with key ≥ x

– return true iff unmarked and key = x
● what if some other node with key = x is in the list?
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Lazy list algorithm

● Serializing contains(x) that returns false
– if node found has key > x

● when node.key is read?
● when pred.next is read?
● when pred is marked (if it is marked)?

–  if node with key = x is marked
● when mark is read?
● when pred.next is read?
● when mark is set?



Lazy list algorithm

● Serializing contains(x) that returns false
– if node found has key > x

● when node.key is read?
● when pred.next is read?
● when pred is marked (if it is marked)?

–  if node with key = x is marked
● when mark is read?
● when pred.next is read?
● when mark is set?

Can we do this for the optimistic list?



Review

● Lock-free algorithm
– “mark” nodes before removing from the list

● marking is logical deletion

– don't modify marked nodes
● use CAS, mark and next pointer in same word

– if encounter a marked node, help
● physically delete node from list

– if CAS fails, retry operation (except if you marked the node)



Lock-free list with wait-free contains

● add and remove just like lock-free list

● contains does not help, does not retry
– just like in lazy list



Application of list techniques

● Trees

● Skip lists
– multiple layers of links

– list at each layer is sublist of layer below

– logarithmic expected search time if each list has half elements 
of next lower level

● probabilistic guarantees

2
5

8
7

90



Summary
● Reduce granularity

● Two-phase locking

● Avoid deadlock by ordering locks

● Optimistic techniques

● Separate “logical” and “physical” changes

● Enable helping (by “announcing” intention)

● Optimize for the common case (usually reading)
– analyze read-only operations separately

● Maintain invariants

● Weaken requirements: progress, invariants



Other techniques/issues
● Pointer swinging

– maintain extra level of indirection

– current version of object is never modified

– to modify object: copy, modify copy, then “swing pointer”

– okay for small objects

– vary granularity to trade between efficiency and simplicity

– beware of ABA problem (garbage collection helps here)

– only lets you change one object at a time

● Keep copies
– maintain an indicator of which is copy is “current”

– like pointer swinging with pointer in reverse direction



Other techniques/issues

● Revocable locks/ownership records
– like locks, but others can take away locks

● they may undo your changes (aka rollback), or else help you finish
● must leave undo or announcement info

– contention can lead to “thrashing”

● Keep logs
– remember operations done, derive state

● keep recent version to reduce overhead
● can roll back by truncating log

– like universal construction from consensus



Other techniques/issues
● Contention management

– queuing

– backoff

– priorities

● Composability
– build algorithms/systems hierarchically

– very hard with locks

● Weaker progress guarantees
– obstruction-freedom

● Adaptive algorithms
– overhead depends on actual rather than potential contention



Problems with locks

● Reduce concurrency

● Possibility of deadlock

● Convoying

● Priority inversion

● Difficult to manage
– everyone must follow locking convention; hard to enforce/check

● Not composable



Problems with CAS or LL/SC

● Access only single location

● ABA problem (for CAS)

● Spurious failures (for LL/SC)

● Typically complex algorithms

● Helping interacts badly caching

● Contention management can break progress guarantees

● Difficult to compose (because of single-location limit)
– bank transfer example



Transactional memory

● Raise level of abstraction
– programmer specifies atomicity boundaries: transactions

– system guarantees atomicity
● commits if it can
● aborts if not (roll back any changes)
● possibly retry on abort

– system manages contention (possibly separable functionality)

– nested transactions compose
● but large transactions may not commit



Transactional memory

● begin transaction

● commit

● “acquire”/“open” objects
– differentiate reading and writing

● validate

● maintain roll-back functionality to support abort

● detect conflicts
– contention manager resolves conflict

● retry policy



Transactional memory

● Herlihy and Moss (1993) proposed hardware TM
– hardware; exploits cache coherence protocol

– platform-dependent limits

● Shavit/Touitou (1995) proposed software TM
– lock-free, not adaptive, very expensive (not practical)

● Revisited by many in early 2000s
– DSTM (PODC 2003), OSTM (OOPSLA 2003), then lots more

– SLE (2001), TCC (2004), then lots more

– very active area (e.g., several new workshops)



Transactional memory
● Object-based vs word-based

● Hardware vs software (or combination)

● Blocking vs nonblocking

– “user” blocking vs “system” blocking

– obstruction-freedom vs lock-freedom

● Contention management

● Encounter-time vs commit-time acquire

● Eager vs lazy conflict detection (“zombie” transactions)

● Undo log vs write set

● Visible vs invisible vs “semivisible” readers

● Feature interaction: i/o, exceptions, conditional waiting, 
privatization, strong vs weak atomicity



Using transactional memory

Q.enqueue(x)
  node = new Node(x)
  node.next := null
  atomic{
    oldtail = Q.tail
    Q.tail := node
    if oldtail = null then
      Q.head := node
    else
      oldtail.next := node
  } 

Q.dequeue()
  atomic{ 
    if Q.head = null then
      return null
    else
      node := Q.head
      Q.head := node.next
      if node.next = null then
        Q.tail := null
      return node.item
  } 

● Simplified interface: atomic blocks
– atomic { code }

– automatic retry, obstruction-free progress guarantee



Implementing transactional memory

● Assume we can intercept access to objects
– for object-based TM, exploit object infrastructure

– for word-based TM, need compiler (or run-time) help

● TM implementation maintains shared metadata
– with object for object-based TM, plus an additional small word for 

each transaction (could be just for active transactions)

– for word-based TM, read sets and write sets

● No hardware support (use CAS)

● Different progress conditions



Dynamic STM (DSTM)

● object-based (JavaTM library)

● no locks (obstruction-free)

● supports dynamic allocation and access

● separable contention management

● pluggable implementations (2nd release)
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Transactional Locking II (TL2)

● Best (or one of the best) performing STM
– also other nice properties beyond the scope of this lecture

● Lock-based, word-based STM
– locks only held during commit phase (not executing user code)

● Uses global version number (potential bottleneck)
– updated by each writing transaction (but could relax this)

● Every location also has version number
– transaction that last wrote it



Transactional Locking II (TL2)
● Read global version counter

– store locally: rv (for read version)

● Run transaction “speculatively”
– track which locations are read and written

– when location first accessed, check version counter

– write values into write set

– read values into read set (so transaction gets consistent reads)

● if value was written by transaction, get value from write set

● At commit
– lock write set

– increment global version counter

– validate read set

– write-back values

– release locks



Combining hardware and software

● Hardware-assisted transactional memory
– new required hardware

– hardware support can accelerate implementation

● Hybrid transactional memory
– STM that can work with HTM 

● hardware transactions and software transactions must “play nicely”
● can be used now (with no hardware support)
● can exploit HTM support with little change

– phased transactional memory
● can switch dynamically between using STM and HTM



Next time

● Asynchronous networks vs asynchronous shared memory

● Agreement in asynchronous networks
– Paxos algorithm

● Reading:
– Lamport paper: The Part-Time Parliament

– Lynch, Chapter 17


