6.852 Lecture 21

* Techniques for highly concurrent objects

— coarse-grained mutual exclusion

- read/write locking

- fine-grained locking (mutex and read/write)

— optimistic locking

- lock-free/nonblocking algorithms

- “lazy” synchronization

—illustrate on list-based sets, apply to other data structures
* Reading:

- Herliny-Shavit Chapter 8 (Chapter 9 in draft version)

Shared-memory algorithms

» Object-oriented pseudocode

—at most one memory access per atomic step
- memory management: allocation and garbage collection

» Synchronization primitives

- compare-and-swap (CAS)
- load-linked/store-conditional (LL/SC)
—assume lock and unlock methods for every object

Shared-memory algorithms

* Atomic (aka linearizable) objects
 Dominant technique: lock-based implementations
* No fault-tolerance (i.e., assume no failures)

- not even always guaranteed failure-free termination

* Progress properties
- deadlock-freedom, lockout-freedom (aka starvation-freedom)
- nonblocking conditions: lock-freedom, wait-freedom

» Performance

- worst-case (time bounds) vs. average case (throughput)
- no good formal models

List-based sets

» Data type: set of integers (no duplicates)
- S.add(x): Boolean: S := S U {x}; return true iff x not already in S

- S.remove(x): Boolean: S := S\ {x}; return true iff x in S initially
- S.contains(x): Boolean: return true iff x in S (no change to S)

» Simple ordered linked-list-based implementation

—illustrate techniques useful for pointer-based data structures
 poor data structure for this specific data type

head

N EENnERnEROERaE

Sequential list-based set

head ——>|=] -I—>I1\\\ If4\ T =] |

add(3) JK

read —[F+[[A (e[F+o]

remove(4)

Sequential list-based set

S.add(x)
pred := S.head
curr ;= pred.next
while (curr.key < x)
pred := curr
curr := pred.next
if curr.key = x then
return false
else
node = new Node(x)
node.next = curr
pred.next = node
return true

S.remove(Xx)

pred := S.head

curr := pred.next

while (curr.key < x)
pred := curr
curr = pred.next

if curr.key = x then
pred.next = curr.next
return true

else
return false

S.contains(x)

curr := S.head

while (curr.key < x)
curr ;= curr.next

if curr.key = x then
return true

else
return false

Sequential list-based set

ey LGOI ECOE S ON

o

pred curr S.remove(x)
pred := S.head

curr := pred.next

while (curr.key < x)
pred = curr
curr := pred.next

if curr.key = x then
pred.next = curr.next
return true

else
return false

remove(4)

Allowing concurrent access

* |s this algorithm “thread-safe”?
* What can go wrong?

e Can we “fix” it?

 How?

Concurrent operations (bad)

o] |
pred curr S.remove(x) ored cUrt
pred := S.head
curr := pred.next
remove(4) while (curr.key < x) remove(9)

pred = curr
curr := pred.next

if curr.key = x then
pred.next = curr.next
return true

else
return false

Coarse-grained locking

S;?féﬁ) Why can we unlock early here? S'S(ff:éi'(r;s(x)
pred ;= S.head pred ;= S. curr := S.head
curr := pred.next curr := pred.n while (curr.key < x)
while (curr.key < x) while (curr.key < x CUIT = curr next
pred := curr pred := curr S unlo.ck() '
curr := pred.next curr := pred.next e &
if curr.key = x then if curr.key = x then It curr.key = x then
S.unlock() pred.next = curr.next return true
return false S.unlock() else
else return true return false
node = new Node(x) else
node.next = curr S.unlock()
pred.next = node return false
S.unlock()

return true . _
Why does this work? (cf. RMWfromRW algorithm)

What progress guarantees do we get?

Coarse-grained locking

head —F F-[T A][3~]

=

pred curr

remove(4)

Coarse-grained locking

* Easy For many applications, this is the best solution!
(Don't underrate simplicity.)

—to write

—to prove correct
* No fault-tolerance
- but it is deadlock-free!
- if we use queue locks, it's lockout-free
* Poor performance when contention is high

- essentially no concurrent access
- but often good enough for low contention

Coarse-grained locking

g

head —F F-[T []I 3~]

"

pred curr

remove(4)
remove(9)
aOICI(6)contains(4)
add(3)

Improving coarse-grained locking

« Reader/writer locks

—allow multiple readers to hold lock simultaneously

—writers can easily starve
e introduce “waiting” bit to avoid this
— contains takes only read lock

 can be big win if contains is the most common operation
- what about add or remove that returns false?

 upgrading

Fine-grained locking

 associate locks with smaller pieces of data
- methods that work on disjoint pieces can proceed concurrently
» simple to prove atomicity if locking is “two-phase”
—first acquire locks, then release (no acquire after any release)

* typically release at the end of operation: strict two-phase locking
e can be expensive to acquire all the locks
» must be careful to avoid deadlock
- typically acquire locks in some predetermined order
* naive two-phase application doesn't help (why not?)

— it does with reader/writer locks, but tricky to avoid deadlock

Hand-over-hand locking

* Fine-grained locking, but not “two-phase”
— atomicity doesn't follow from general rule; a bit tricky to prove
* Hold at most two locks at a time

—acquire lock for successor before releasing lock for predecessor

head ——>|-%| > 1] >4 9 =] |

remove(4)

pred curr

Hand-over-hand locking

* Must we lock the successor of a node we are trying to
add?

- we don't need to lock to read the key (why not?)

* Must we lock a node we are trying to remove?

Removing a Node

i

i
(el

-

OEpd G agdCIl

0%

Removing a Node

i

OEpd G agdCIl

Removing a Node

BEad Q5 g (5 nd G g Gl

oooa -

Removing a Node

HEd G5 g U5 nd G g Gl

oooa -

Removing a Node

BEed G5y U5 nd G g Gl

oooa -

Removing a Node

G G5y U5 d GG g CIN

oooa -

Removing a Node

0
BEd G5y U5 5d GG g CIN

A

Removing a Node

0
BEd Q5 g U5 5ad G g CIN

A

Removing a Node

6 6 6
BE G5y U5 5d GG g CIN

A

Removing a Node

6
15— (al

-

o] (el el

Lkl

Uh, Oh

L[|! [b\+j°H—>[d\ J
SR

Uh, Oh

[H—*Iah! Ibh_! el (el]
B L

Hand-over-hand locking

 Problems

- must acquire O(k) locks, where k = |S]

—threads can get stuck behind a slow thread

e can avoid this by using reader/writer locks, but then must do
something to avoid deadlock

 |dea: What if we find the nodes first without locking,
and then lock only the nodes we need?

- must ensure that the node we modify is still in list
— optimistic locking

Optimistic locking

» Search down list without locking
* Find and lock appropriate nodes
* Verify that nodes are still adjacent and in list (validation)

—we can do this by traversing list again (provided that nodes are
not removed from list while they are locked)

e Better than hand-over-hand if

—traversing twice without locking is cheaper than once with locking
e traversal is wait-free! (we'll come back to this)
- validation typically succeeds

Optimistic locking

Optimistic locking

What can go wrong? (part 1)

What can go wrong? (part 1)

What can go wrong? (part 1)

What can go wrong? (part 2)

What can go wrong? (part 2)
b -

{/@3 an
\ ’add(b)
A

1

CB—%ED—

What can go wrong? (part 2)

Validate (part 1)

Yes, b still
reachable
from head

Validate (part 2)

Yes, b still
points to d

Optimistic locking

Lock-freedom

« Even without failures, locks can cause problems:

- some operations take 1000x (or more) longer than others,
nondeterministically due to page faults, descheduling, etc.

—if this happens to anyone in their critical section, everyone else
who wants to access that lock must wait

* What about lock-free algorithms?

—if any thread executing a method does not fail then some
method completes.

- weaker than wait-free: starvation is possible

- but rules out a delayed thread from blocking other threads
indefinitely, and thus, no locks

Lock-free list-based set

 |dea: Use CAS to change next pointer

—make sure next pointer hasn't changed since you read it
e assumes nodes aren't reused
— possible because operations only change one pointer

— but still nontrivial

Adding a Node

T— el

Adding a Node

T— el

g 43

Adding a Node

[H—> sumd GIN

: aS

Adding a Node

L H\ cl—

Removing a Node

BEad Q5 g (5 nd G g Gl

S A

Removing a Node

L

S A

(el]

Removing a Node

[H—»du
S

Look Familiar?

Bad news

(3G [\,Ji C[3(D
e

Lock-free list-based set

 |dea: Add “mark” to a node to indicate whether its key
been removed from the set.
- set mark before removing node from list
 thus, if mark is not set, node is in the list
- setting the mark removes key from the set
e it is the serialization point of a successful remove operation
- don't change next pointer of a marked node

* mark and next pointer must be in the same word

- “steal” a low-order bit from pointers
— Java provides special class: AtomicMarkableReference

Lock-free list-based set

* Traverse the list to find appropriate nodes
- what if we encounter marked nodes?
* [f nodes are unmarked then operate as follows:

—for contains(x) or unsuccessful add/remove(x), return
appropriate value based on whether curr.key = x

—for successful add(x), CAS pred.next+mark to (node, false)
— for successful remove(x),

e CAS curr.next+mark to (curr.next, true) [logical removal]
» CAS pred.next+mark to (curr.next, false) [‘physical” removal]

—if (first) CAS fails, retry operation

Lock-free list-based set

 \What if we encounter marked nodes?

- HELP!
—if curr is marked, CAS pred.next+mark to (curr.next, false)
- if CAS fails, retry operation

* This kind of helping is characteristic of lock-free and
wait-free algorithms (not all have it, but most do).

— next lecture, we'll see obstruction-freedom, a weaker condition
that doesn't typically require helping.

Removing a Node

H—»M—»d]
N7 ®
L

Removing a Node

Removing a Node

[H—*la\q b=l
T A

Removing a Node

L

T A

Next time

* Transactional memory

» Reading:
- Herlihy, Luchangco, Moir, Scherer paper
- Dice, Shalev, Shavit paper

