
6.852 Lecture 21

● Techniques for highly concurrent objects
– coarse-grained mutual exclusion

– read/write locking

– fine-grained locking (mutex and read/write)

– optimistic locking

– lock-free/nonblocking algorithms

– “lazy” synchronization

– illustrate on list-based sets, apply to other data structures

● Reading:
– Herlihy-Shavit Chapter 8 (Chapter 9 in draft version)

Shared-memory algorithms

● Object-oriented pseudocode
– at most one memory access per atomic step

– memory management: allocation and garbage collection

● Synchronization primitives
– compare-and-swap (CAS)

– load-linked/store-conditional (LL/SC)

– assume lock and unlock methods for every object

Shared-memory algorithms

● Atomic (aka linearizable) objects

● Dominant technique: lock-based implementations

● No fault-tolerance (i.e., assume no failures)
– not even always guaranteed failure-free termination

● Progress properties
– deadlock-freedom, lockout-freedom (aka starvation-freedom)

– nonblocking conditions: lock-freedom, wait-freedom

● Performance
– worst-case (time bounds) vs. average case (throughput)

– no good formal models

List-based sets

● Data type: set of integers (no duplicates)

– S.add(x): Boolean: S := S ∪ {x}; return true iff x not already in S

– S.remove(x): Boolean: S := S \ {x}; return true iff x in S initially

– S.contains(x): Boolean: return true iff x in S (no change to S)

● Simple ordered linked-list-based implementation
– illustrate techniques useful for pointer-based data structures

● poor data structure for this specific data type

-∞

head

1 4 9 ∞

Sequential list-based set

∞- 4 9 ∞head

add(3) 3

∞- 4 9 ∞head

remove(4)

1

1

Sequential list-based set

S.add(x)
 pred := S.head
 curr := pred.next
 while (curr.key < x)
 pred := curr
 curr := pred.next
 if curr.key = x then
 return false
 else
 node = new Node(x)
 node.next = curr
 pred.next = node
 return true

S.remove(x)
 pred := S.head
 curr := pred.next
 while (curr.key < x)
 pred := curr
 curr := pred.next
 if curr.key = x then
 pred.next = curr.next
 return true
 else
 return false

S.contains(x)
 curr := S.head
 while (curr.key < x)
 curr := curr.next
 if curr.key = x then
 return true
 else
 return false

Sequential list-based set

S.remove(x)
 pred := S.head
 curr := pred.next
 while (curr.key < x)
 pred := curr
 curr := pred.next
 if curr.key = x then
 pred.next = curr.next
 return true
 else
 return false

∞- 4 9 ∞head 1

pred curr

remove(4)

Allowing concurrent access

● Is this algorithm “thread-safe”?

● What can go wrong?

● Can we “fix” it?

● How?

Concurrent operations (bad)

S.remove(x)
 pred := S.head
 curr := pred.next
 while (curr.key < x)
 pred := curr
 curr := pred.next
 if curr.key = x then
 pred.next = curr.next
 return true
 else
 return false

∞- 9 ∞head 1

pred curr

remove(4)

pred curr

remove(9)

4

Coarse-grained locking
S.add(x)
 S.lock()
 pred := S.head
 curr := pred.next
 while (curr.key < x)
 pred := curr
 curr := pred.next
 if curr.key = x then
 S.unlock()
 return false
 else
 node = new Node(x)
 node.next = curr
 pred.next = node
 S.unlock()
 return true

S.remove(x)
 S.lock()
 pred := S.head
 curr := pred.next
 while (curr.key < x)
 pred := curr
 curr := pred.next
 if curr.key = x then
 pred.next = curr.next
 S.unlock()
 return true
 else
 S.unlock()
 return false

S.contains(x)
 S.lock()
 curr := S.head
 while (curr.key < x)
 curr := curr.next
 S.unlock()
 if curr.key = x then
 return true
 else
 return false

Why does this work? (cf. RMWfromRW algorithm)
What progress guarantees do we get?

Why can we unlock early here?

Coarse-grained locking

∞- 4 9 ∞head 1

pred curr

remove(4)

Coarse-grained locking

● Easy
– to write

– to prove correct

● No fault-tolerance
– but it is deadlock-free!

– if we use queue locks, it's lockout-free

● Poor performance when contention is high
– essentially no concurrent access

– but often good enough for low contention

For many applications, this is the best solution!
(Don't underrate simplicity.)

Coarse-grained locking

∞- 4 9 ∞head 1

pred curr

remove(4)
remove(9)

add(6)
contains(4)

add(3)

Improving coarse-grained locking
● Reader/writer locks

– allow multiple readers to hold lock simultaneously

– writers can easily starve
● introduce “waiting” bit to avoid this

– contains takes only read lock
● can be big win if contains is the most common operation

– what about add or remove that returns false?
● upgrading

Fine-grained locking

● associate locks with smaller pieces of data
– methods that work on disjoint pieces can proceed concurrently

● simple to prove atomicity if locking is “two-phase”
– first acquire locks, then release (no acquire after any release)

● typically release at the end of operation: strict two-phase locking

● can be expensive to acquire all the locks

● must be careful to avoid deadlock
– typically acquire locks in some predetermined order

● naive two-phase application doesn't help (why not?)
– it does with reader/writer locks, but tricky to avoid deadlock

Hand-over-hand locking

● Fine-grained locking, but not “two-phase”
– atomicity doesn't follow from general rule; a bit tricky to prove

● Hold at most two locks at a time
– acquire lock for successor before releasing lock for predecessor

∞- 4 9 ∞head 1

pred curr

remove(4)

Hand-over-hand locking

● Must we lock the successor of a node we are trying to
add?
– we don't need to lock to read the key (why not?)

● Must we lock a node we are trying to remove?

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(c)
remove(b)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Uh, Oh

a c d

remove(b)
remove(c)

b

Uh, Oh

a c d

remove(b)
remove(c)

b

Hand-over-hand locking

● Problems
– must acquire O(k) locks, where k = |S|

– threads can get stuck behind a slow thread
● can avoid this by using reader/writer locks, but then must do

something to avoid deadlock

● Idea: What if we find the nodes first without locking,
and then lock only the nodes we need?
– must ensure that the node we modify is still in list

– optimistic locking

Optimistic locking

● Search down list without locking

● Find and lock appropriate nodes

● Verify that nodes are still adjacent and in list (validation)
– we can do this by traversing list again (provided that nodes are

not removed from list while they are locked)

● Better than hand-over-hand if
– traversing twice without locking is cheaper than once with locking

● traversal is wait-free! (we'll come back to this)

– validation typically succeeds

Optimistic locking

b d ea

add(c) Aha!

Optimistic locking

b d ea

add(c)

What can go wrong? (part 1)

b d ea

add(c)

What can go wrong? (part 1)

b d ea

add(c)

remove(b
)

What can go wrong? (part 1)

b d ea

add(c)

What can go wrong? (part 2)

b d ea

add(c)

What can go wrong? (part 2)

b d ea

add(c)

add(b’)

b’

What can go wrong? (part 2)

b d ea

add(c)

b’

Validate (part 1)

b d ea

add(c) Yes, b still
reachable
from head

Validate (part 2)

b d ea

add(c) Yes, b still
points to d

Optimistic locking

b d ea

add(c)

c

Lock-freedom

● Even without failures, locks can cause problems:
– some operations take 1000x (or more) longer than others,

nondeterministically due to page faults, descheduling, etc.

– if this happens to anyone in their critical section, everyone else
who wants to access that lock must wait

● What about lock-free algorithms?
– if any thread executing a method does not fail then some

method completes.

– weaker than wait-free: starvation is possible

– but rules out a delayed thread from blocking other threads
indefinitely, and thus, no locks

Lock-free list-based set

● Idea: Use CAS to change next pointer
– make sure next pointer hasn't changed since you read it

● assumes nodes aren't reused

– possible because operations only change one pointer

– but still nontrivial

Adding a Node

a c d

Adding a Node

a c d

b

Adding a Node

a c d

b

CAS

Adding a Node

a c d

b

Removing a Node

a b c d

remove
b

remove
c

Removing a Node

a b c d

remove
b

remove
c

CAS

Removing a Node

a b c d

remove
b

remove
c

CAS

Bad news

Look Familiar?

a b c d

remove
b

remove
c

Lock-free list-based set

● Idea: Add “mark” to a node to indicate whether its key
been removed from the set.
– set mark before removing node from list

● thus, if mark is not set, node is in the list

– setting the mark removes key from the set
● it is the serialization point of a successful remove operation

– don't change next pointer of a marked node
● mark and next pointer must be in the same word

– “steal” a low-order bit from pointers
– Java provides special class: AtomicMarkableReference

Lock-free list-based set

● Traverse the list to find appropriate nodes
– what if we encounter marked nodes?

● If nodes are unmarked then operate as follows:
– for contains(x) or unsuccessful add/remove(x), return

appropriate value based on whether curr.key = x

– for successful add(x), CAS pred.next+mark to (node, false)

– for successful remove(x),
● CAS curr.next+mark to (curr.next, true) [logical removal]
● CAS pred.next+mark to (curr.next, false) [“physical” removal]

– if (first) CAS fails, retry operation

Lock-free list-based set

● What if we encounter marked nodes?
– HELP!

– if curr is marked, CAS pred.next+mark to (curr.next, false)

– if CAS fails, retry operation

● This kind of helping is characteristic of lock-free and
wait-free algorithms (not all have it, but most do).
– next lecture, we'll see obstruction-freedom, a weaker condition

that doesn't typically require helping.

Removing a Node

a b c d

remove
c

CAS

Removing a Node

a b d

remove
b

remove
c

cCASCAS

failed

Removing a Node

a b d

remove
b

remove
c

c

Removing a Node

a d

remove
b

remove
c

Next time

● Transactional memory

● Reading:
– Herlihy, Luchangco, Moir, Scherer paper

– Dice, Shalev, Shavit paper

