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Today’s plan

• Wait-free synchronization.
• The wait-free consensus hierarchy
• Universality of consensus
• Reading:

– [Herlihy, Wait-free synchronization] (Another Dijkstra 
Prize paper)

– [Attiya, Welch, Chapter 15]



  

Overview
• General goal:  

– Classification of atomic object types:  Which types of objects can be used 
to implement which other types, for which numbers of processes and 
failures. 

– A theory of relative computability, for objects in distributed systems.
• Follow Herlihy’s approach.
• Considers wait-free termination only (n-1 failures).
• Object types:

– Primitives used in multiprocessor memories:
• Test-and-set, fetch-and-add, compare-and-swap

– Standard programming data types:
• Counters, queues, stacks

– Consensus, k-consensus
• Hierarchy of types, with:

– Read/write registers at the bottom, level 1
– Consensus (viewed as an atomic object) at the top, level ∞
– Others in between.

• Universality result:  Can use consensus for n processes to implement 
(wait-free) any object for n processes.



  

Herlihy’s Hierarchy
• Defines hierarchy in terms of:

– How many processes can solve consensus using only objects of the given 
type, plus registers (thrown in for free).

• Shows that no object type at one level of the hierarchy can implement 
objects at higher levels.

• Shows:
– Read/write registers are at level 1.
– Stacks, queues, fetch-and-add, test-and-set are at level 2.
– Consensus, compare-and-swap are at “level ∞”.

• Hierarchy has a few limitations:
– All of the interesting types are at level 1, 2 or ∞.
– Gives no information about relative computability of objects at the same 

level.
– Lacks some basic “robustness” properties.

• Yields some interesting classification results.
• More work is needed.



  

The Model

• Based on I/O automata.
– Herlihy claims he doesn’t need tasks, but we’ll use them to define 

fair executions, as usual.

• Concurrent system:
– Processes + atomic objects

• Sequential specification = variable type
• Use such a concurrent system to implement an atomic 

object, of a specified type.
• Warning:  Herlihy’s definition of implementation consider 

one object R, but results allow many objects (of one type).
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Consensus as an atomic object
• Define the consensus variable type (X, x0, invs, resps, δ):

– Let V = consensus domain.
– Define X = V ∪ { ⊥ }.
– x0 = ⊥
– invs = { init(v) | v  ∈ V }
– resps = { decide(v) | v ∈ V }
– δ(init(v), ⊥) = (decide(v), v), for any v in V 
– δ(init(w), v) = (decide(v), v), for any v, w in V

• First value provided in an init() operation is everyone’s decision.

• Herlihy’s consensus object is simply a wait-free atomic object for the 
consensus variable type.

• Lets him consider atomic objects everywhere:
– For high-level objects being implemented, and
– For low-level objects used in the implementations.

• Usually treats low-level objects as shared variables (as we do).



  

Herlihy’s consensus object vs. our 
consensus definition

• Herlihy’s consensus atomic object is “almost the 
same” as our definition of consensus:
– Satisfies well-formedness, agreement, strong validity 

(every decision is someone’s initial value).
– Wait-free termination.

• Every init() on a non-failing port eventually receives a decide() 
response.

• Some (unimportant) differences:
– Allows repeated operations on the same port; but all get 

the same value v.
– Inputs needn’t arrive everywhere; equivalent requirement 

(Exercise 12.1)



  

Binary vs. arbitrary consensus

• Herlihy’s paper talks about “implementing 
consensus”, without specifying the domain.

• Doesn’t matter:
• Theorem:  Let T be the consensus type with 

domain { 0,1 }, and T' the consensus type with any 
finite value domain V.  

   Then there is a wait-free implementation of an 
n-process atomic object of type T' from n-process 
shared variables of type T and read/write registers.



  

Algorithm
• Shared variables:

– Boolean consensus objects, cons(1),…,cons(k), where k is the 
length of a bit string representation for elements of V.

– Registers init(1),…, init(n) over V ∪ { ⊥ }, where V is the consensus 
domain, initially all ⊥.

• Process i:
– Post your initial value in init(i), as a bit string.
– Maintain a current preference, locally, initialized to init(i).
– For l = 1 to k do:

• Engage in binary consensus on cons(l), with l-order bit of your current 
preference as input.

• If your bit loses, then:
– read all init(j) registers to find some value whose first l-1 bits agree with 

your current preference, and whose l’th bit is the winning bit from cons(l).  
– Reset your preference to this init(j).

– Return your final preference.



  

Extension to infinite V

• Theorem:  Let T be the consensus type with domain { 0,1 }, 
T' the consensus type with any value domain V.   

    Then there is a wait-free implementation of an n-process 
atomic object of type T' from n-process shared variables 
of type T and read/write registers.

• Proof:
– Similar algorithm.
– Now reach consensus on index j, rather than value, for some active 

process (one that wrote init(j)).  
– Then return init(j).

• Moral:  When we talk about “solving consensus”, we needn’t 
specify V (unless we care about complexity).



  

Consensus Numbers

• Definition:  The consensus number of a variable type T is 
the largest number n such that shared variables of type T 
and read/write registers can be used to implement an 
n-process wait-free atomic consensus object.

• That is, T + registers solve n-process consensus.
• Notes:

– Registers are thrown in for free.
– Convenient in writing algorithms.
– OK because they are at the bottom of the hierarchy (consensus 

number 1).
• Follows from [Loui, Abu-Amara]

• Definition:  If T + registers solve n-process consensus for 
every n, then we say that T  has consensus number ∞.



  

Consensus Numbers
• Consensus numbers yield a way of showing that one variable type T 

cannot implement another variable type T', for certain numbers of 
processes.

• Theorem 1:  Suppose cons-number(T) = m, and cons-number(T') > m.  
Then there is no (wait-free) implementation of an atomic object of type 
T' for n > m processes, from shared variables of type T and registers. 

• Proof:  
– Enough to show for n = m+1.
– By contradiction.  Suppose there is an (m+1)-process implementation of 

an atomic object of type T' from T + registers.
– Since cons-number(T') > m, there is an (m+1)-process consensus 

algorithm C using T' + registers.
– Replace the T∋ shared variables in C with the assumed implementation of 

T' from T + registers.
– By our composition theorem, this yields an (m+1)-process consensus 

algorithm using T + registers.
– Contradicts assumption that cons-number(T) = m.



  

Example:  Read/write register types

• Theorem 2:  Any read/write register type, for any value 
domain V and any initial value v0, has consensus number 1.

• Proof:
– Clearly, can be used to solve 1-process consensus (trivial).
– Cannot solve 2-process consensus [Book, Theorem 12.6].

• Corollary 3:  Suppose cons-number(T') > 1.  Then there is 
no (wait-free) implementation of an atomic object of type T' 
for n > 1 processes, from registers only.

• Proof:  
– By Theorems 1 and 2.
– Let type T be any register type, in Theorem 1.



  

Example:  Snapshot types

• Corollary3:  Suppose cons-number(T') > 1.  Then there is 
no (wait-free) implementation of an atomic object of type T' 
for n > 1 processes, from registers only.

• Theorem 4:  Any snapshot type, for any underlying domain 
(W,w0), has consensus number 1.

• Proof:  
– By contradiction.
– Suppose there is a snapshot type T' with cons-number(T') > 1.

• That is, it can be used to solve 2-process consensus.
– Then by the Corollary, there is no wait-free implementation of an 

atomic object of type T' for > 1 processes, from registers only.
– Contradicts known implementation of snapshots from registers.



  

Example:  Queue types
• Define a FIFO queue type queue(V,q0), where:

– V is a value domain.
– q0 is a finite sequence giving the initial queue contents.
– Operations:

• enqueue(v), v in V:  Add v to end of queue, return ack.
• dequeue():  Return head of queue if nonempty, else ⊥. 

• Most common case:  q0 = λ, empty sequence.

• Theorem 5:  There is a queue type T with cons-number(T) ≥ 2.
• Proof:  

– Construct a 2-process consensus algorithm for domain V.
– Shared variables:

• One queue of { 0 }, q0 = 0
• Registers, init(1) and init(2) over V ∪ { ⊥ }, initially ⊥.

– Process i:
• Post your initial value in init(i).
• Perform dequeue().
• If you get 0, return your initial value.
• Else (you get ⊥), read and return init(j), for the other process j.



  

Queue algorithm
• Theorem 6:  There is a queue type T with cons-number(T) ≥ 2.

• Corollary 7:  There is no wait-free implementation of an n-process 
atomic object of the above queue type using registers only, 
for any n ≥ 2.

• Proof:  
– By Corollary 3.
– Essentially:  suppose there is.  Plug it into the above 2-process consensus 

algorithm and get a 2-process consensus algorithm using registers only, 
contradiction.

• Q:  What about queues with other initial values q0?  
• E.g., initially-empty queues?

– Claim there’s an algorithm, but more complicated.  Exercise?
• What about other, known initial values?



  

Queue impossibility

• Theorem 8:  Every queue type T has cons-
number(T) ≤ 2.

• More strongly:  No combination of queue 
variables, with any queue types, initalized in any 
way, plus registers, can implement 3-process 
consensus.

α

1  3
 2

bivalent

univalent

• Proof:  
– Suppose such an algorithm, A, exists.
– As for the register-only case, we can 

show that A has a bivalent initialization.  
– Furthermore, we can maneuver as 

before to a decider configuration:



  

Queue impossibility

• Suppose WLOG that process 1 is 0-valent, 
process 2 is 1-valent.

• Consider what p1 and p2 can do in their 
steps.

• If they access different variables, or both 
access the same read/write shared variable, 
we get contradictions as in the purely 
read/write case.

• So assume they both access the same queue 
q; consider cases based on type of operation.

• Case 1:  p1 and p2 both dequeue:
– Then resulting states look the same to p3.
– Running p3 after both yields a contradiction.

α

1  3
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0-valent 1-valent

p3 only p3 only



  

Cases 2 and 3

• Case 2:  p1 enqueues and p2 dequeues:
– If the queue is nonempty after α, the two steps 

commute---same system state after  p1 p2 or p2 p1, 
yielding a contradiction.

– If the queue is empty after α, then the states after p1 and 
p2 p1 look the same to all but p2 (and the queue is the 
same).

– Running p3 (or p1) alone after both yields a contradiction.

• Case 3:  p1 dequeues and p2 enqueues:
– Symmetric.



  

Case 4

• Case 4:  p1 and p2 both 
enqueue:
– Consider two possible orders:

p1 enqueues a1 p2 enqueues a2

0-valent 1-valent

p1 enqueues a1p2 enqueues a2

– Construct two executions:
• After p1 p2, p1 runs alone until it dequeues a1, then p2 runs alone 

until it dequeues a2.
• After p2 p1, p1 runs alone until it dequeues a2, then p2 runs alone 

until it dequeues a1.

– These two executions are indistinguishable by p3, leading to the 
usual sort of contradiction.

– Constructing the executions:
• Q:  What is different after p1 p2 and p2 p1?
• Only the one queue q, which has a1 a2 in first case, a2 a1 in second.
• States of all processes, values of other objects, are the same in both.



  

p1 alone p1 alone

0-valent 1-valent

0-valent 1-valent

p1 dequeues a1 p1 dequeues a2

Constructing the executions

• Run p1 alone after p1 p2 and 
after p2 p1.

• Must eventually decide, 
differently in these two 
situations.

• But p1 can’t distinguish until it 
dequeues from q, so it must 
eventually do so.

• So run p1 alone just until it 
dequeues from q.

p1 enqueues a1 p2 enqueues a2

p1 enqueues a1p2 enqueues a2

• Q:  Now what is different?
• q has just a2 on left branch, just a1 on right branch
• States of all other objects are the same.
• States of p2 and p3 are the same, but p1 may be different.



  

Constructing the executions
• Now run p2 alone after both 

branches.
• Must decide differently in the 

two executions.
• But p2 can’t distinguish until it 

dequeues from q, so it must 
eventually do so.

• So run p2 alone just until it 
dequeues from q.

p1 alone p1 alone

0-valent 1-valent

p1 dequeues a1 p1 dequeues a2

p1 enqueues a1 p2 enqueues a2

p1 enqueues a1p2 enqueues a2

• Q:  Now what is different?
• All objects, including q, are same.
• State of p3 is the same, though p1 

and p2 may be different.
p2 alone p2 alone

0-valent 1-valent

p2 dequeues a2 p2 dequeues a1



  

Constructing the executions

• This gives the needed 
executions.

• As noted earlier, just run 
p3 alone after both to get 
the contradiction.

p1 alone p1 alone

p1 dequeues a1 p1 dequeues a2

p1 enqueues a1 p2 enqueues a2

p1 enqueues a1p2 enqueues a2

p2 alone p2 alone

0-valent 1-valent

p2 dequeues a2 p2 dequeues a1



  

Queue types:  Recap

• We just showed:
– Theorem 8:  Every queue type T has 

cons-number(T) ≤ 2.
– In fact, all queue types together can’t solve 

3-process consensus.
– So cons-number(T) definition doesn’t tell the 

entire story.

• Also:
– Theorem 5:  There is a queue type T with 

cons-number(T) ≥ 2.



  

Example:  Compare-and-swap types

• Define a compare-and-swap type:
– V, the value domain.
– v0, initial value.
– invs = { compare-and-swap(u,v) | u, v in V }
– resps = V
– δ( compare-and-swap(u,v), w ) =

• (w, v) if u = w,
• (w, w) if not.

• That is, if the variable value is equal to the first 
argument, change it to the second argument; 
otherwise leave the variable alone.

• In either case, return the former value of the 
variable.



  

Compare-and-swap types

• Theorem 9:  Let T be the consensus type with value 
domain V.  Then there is a compare-and-swap type 
T' that can be used to implement an n-process 
consensus object with type T, for any n.

• That is, T' can be used to solve n-process 
consensus for any n; so cons-number(T') = ∞.

• Proof:
– Use just a single C&S shared variable, 

value domain = V ∪ { ⊥ }, initial value = ⊥.
– Process i:

• If initial value = v, then access the C&S shared variable with 
compare-and-swap( ⊥, v ), obtain the previous value w.

• If w = ⊥ then decide v.  (You are first).
• Otherwise, decide w.  (Someone else was first and proposed w.)



  

Compare-and-swap types

• Corollary 10:  It is impossible to implement an atomic object 
of this C&S type T' for n ≥ 3 processes using just FIFO 
queues and read/write registers.

• Proof:  By Theorem 1, with m = 2.

• Recall Theorem 1:  Suppose cons-number(T) = m, and cons-
number(T') > m.  Then there is no (wait-free) implementation of an 
atomic object of type T' for n > m processes, from shared variables of 
type T and registers.

• Herlihy paper classifies other data types similarly, LTTR. 



  

Universality of consensus

• Consensus variables and registers can implement a 
wait-free n-process atomic object of any variable type, 
for any number n.

• Algorithm in paper combines:
– A basic unfair, non-wait-free algorithm.
– A fairness mechanism, to ensure that every operation gets 

completed.
– Optimizations, to reuse memory, save time.

• [Attiya, Welch, Chapter 15] separate these three aspects.
• Here, we’ll simplify by forgetting the optimizations.

• Assume an arbitrary data type T = ( V, v0, invs, resps, δ ).
• Fix n.



  

Non-wait-free algorithm
• Shared variables:

– An infinite sequence of n-process consensus variables, cons(1), cons(2),…
– Each variable’s domain is
   { (i, k, a), where:

• 1 ≤ i ≤ n, a process id,
• k is a positive integer, a local sequence number,
• a ∈ invs, a particular invocation for the T object }

• cons(j) is used to decide which invocation on the object being 
implemented is the jth one to be performed.

• The consensus objects explicitly decide on this sequence, and it’s 
consistently observed everywhere.

• Process i:
– Participates in consensus executions in order 1,2,3,…
– Keeps track locally of the decision values for all consensus variables; 

these are triples (j,k,a).
– Knowing the sequences of decisions allows process I to “run” the 

sequence and compute the new states and responses.



  

Non-wait-free algorithm, process i

• When a new invocation a arrives:
– Record it in local state, as current-inv.
– This is a triple ( i, k, a ), where k is the first unused local 

sequence number.
– For each cons(j), starting from the first one that i hasn’t 

yet participated in:
• Invoke init( current-inv ) on cons(j).
• If returned decision = current-inv then

– Record it in local state.
– Run the sequence of invocations in the decisions up to j to get the 

response.
– Return response to the user and quiesce.

• If returned decision ≠ current-inv then
– Record it in local state
– Continue on to j+1.



  

Algorithm properties

• Well-formed:  Yes
• Atomic:  Yes  

– Everyone sees a consistent sequence of operations.
– Serialization point for an operation can be the point 

where it wins at some consensus shared variable.

• Wait-free:  No
– Process i could submit the same operation to infinitely 

many cons variables, and it could always lose.



  

Wait-free algorithm

• Add a priority mechanism to ensure that each 
operation completes.

• For cons(j), j ≡ i mod n, current invocation of 
process i gets priority.

• Priority managed outside the consensus variables:
– A process i sometimes  “helps” another process j, by 

invoking a consensus objects with j’s invocation instead 
of i’s own.

• Additional shared variables:
– announce(i), for each process i, a single-writer multi-

reader register, written by i, read by everyone.
– Value domain:  { (i, k, a) as above } ∪ { ⊥ }.
– Initial value: ⊥



  

Wait-free algorithm, process i

• When a new invocation a arrives:
– Record it in local state, as current-inv.

• Triple ( i, k, a ), as before.
– Write current-inv into announce(i).
– Then proceed as in the non-wait-free algorithm, except:

• Before participating in cons(j), read announce(j'), where j ≡ j' 
mod n.

• If announce(j') contains a triple inv (not ⊥), and inv has not 
already won any of cons(1), cons(2),…, cons(j-1), then invoke 
init(inv) on cons(j).

• Otherwise, invoke init( current-inv ) on cons(j), as before.
– Handle decisions as before.
– Just before returning value to the user, reset 

announce(i) := ⊥.



  

Algorithm properties

• Well-formed, Atomic:  Yes, as before.
• Wait-free:  Yes:

– Claim every operation eventually completes.
– If not, then consider some (i,k,a) that gets stuck.
– Then after announce(i) is set to (i,k,a), it stays there forever.
– Choose any j such that:

•  j ≡ i mod n, and
• No one accesses cons(j), or even reads announce(i) in preparation for 

accessing cons(j), before announce(i) is set to (i,k,a).
– Then for this j, everyone who participates will choose to help i by 

submitting (i,k,a) as input.
– At least one process participates (i itself).
– So the decision must be this (i,k,a).



  

Complexity
• Shared-memory size:

– Infinitely many shared variables, each of unbounded size.
• Time:

– Unbounded, because:
• A process i may start with a cons(j) that is far out of date, have to 

access cons(j), cons(j+1),…to catch up.

• Herlihy:
– Formulates the algorithm differently, in terms of a linked list of 

operations, so it’s hard to compare.
– Claims a nice O( n l ) bound.

• Avoids the catch-up time by allowing processes to record information 
they’ve seen, so i needn’t go back to the beginning.

• Use similar strategy for our algorithm?
– Still has unbounded sequence numbers.
– Still needs infinitely many consensus objects---seems unavoidable 

since each is good for only one decision
– “Garbage-collects” to reclaim space taken by old objects.



  

Robustness
• [Jayanti] defined a robustness property for the hierarchy: 

– Robustness:  If T is a type at level n, and S is a set of types, all at 
levels < n, then T has no implementation from S for n processes.

• But did not determine whether the hierarchy is robust.
• Herlihy’s results don’t imply this; they do imply:

– If T is a type at level n, and S is a single type at a level < n, then T 
has no implementation from S and registers.

• But it’s still possible that combining low-consensus-number 
types could allow implementation of a higher-consensus-
number type.

• Later papers give both positive and negative results.
– Based on technical issues. 



  

Summary

• Work is still needed to achieve our original goals: 
– Determine which types of objects can be used to implement which 

other types, for which numbers of processes and failures. 
– A comprehensive theory of relative computability, for objects in 

distributed systems.



  

Next time…

• More on wait-free computability
• Wait-free vs. f-fault-tolerant computability
• Reading:                                  

– [Borowsky, Gafni, Lynch, Rajsbaum]
– [Chandra, Hadzilacos, Jayanti, Toueg]
– [Attie, Guerraoui, Kouznetsov, Lynch]


