6.852 Lecture 15

* Pragmatic issues for shared-memory multiprocessors

* Practical mutual exclusion algorithms

- test-and-set locks

- queue locks
* Generalized exclusion/resource allocation problems
» Reading:

- Mellor-Crummey and Scott paper (Dijkstra prize winner)

- Magnussen, Landin, Hagersten paper
- Chapter 11

Next time

« Consensus
* Reading: Chapter 12

Mutual exclusion with RMW

e Quick review

- shared-memory multiprocessors provide “atomic operations”
» test&set, fetch&increment, swap, compare&swap (CAS), LL/SC
—In practice, all mutual exclusion algorithms use these operations

 one-variable test&set algorithm

e queue lock: one queue with enqueue, dequeue and head
- multiprocessors do not support queues in hardware
» ticket lock algorithm: two fetch&inc variables

A note on terminology

* Different usage in “systems” and “theory” communities

- blocking: yields processor

— atomic operation: some kind of read-modify-write operation
- implement: provide specified functionality??

- simulation: experiment, or running on a (hardware) simulator
— process vs thread

—locks vs mutual exclusion

* Different emphasis and concerns

—mechanism vs. abstraction: processors, locks, blocking
- performance issues: caching, contention, etc.

Mutual exclusion In practice

 \What to do when lock is taken

- “block”: deschedule process (yield processor)

* OS reschedules it in future, often when some condition is satisfied
- busy-wait/spin

 don't yield process: repeatedly test for some condition

 should be used only if waiting is expected to be very short

The choice of blocking vs spinning applies
to other synchronization constructs,
such as producer-consumer and barriers.

Mutual exclusion In practice

» Spin locks are very important
—-used in OS kernels
* Assume critical sections are very short
—typically not nested (hold only one lock at a time)
* Performance is critical

- must consider caching and contention effects
— adaptive requirements/performance

Shared-memory multiprocessors

P, P, P, P, Ps

Shared memory

Shared-memory multiprocessors

P, P, P, P, Ps
$ $ $ $ $
Network (bus)

Mem Mem Mem Mem

Shared-memory multiprocessors

Mem Mem Mem Mem Mem

P3

$ $

Network (bus)

Shared-memory multiprocessors

o
o
o
.
ot
o

e
o

o
.
o

o
.
3

o’
o
e
ot

e

o
o
3
o
o
o
o
#
)
o
. .
o R
o .
o
ot
o
o
o
R

Shared-memory multiprocessors

* Memory access does not have uniform cost

- next-level cache access is ~10x more expensive

- remote-memory access produces network traffic
» network bandwidth can be bottleneck
- writes invalidate caches

 every processor that wants to read must request again
e can typically share read access

- all memory is multiwriter, but most is reserved for a process

Mutual exclusion In practice

* Critical sections are very short

—typically hold only one lock at a time
— critical processes are not swapped out

e assume no multiprogramming for now (one thread per processor)
» Caching and contention are important

Practical spin locks

e Test&set locks
e Ticket lock
* Queue locks

— Anderson
- Graunke/Thakkar

- Mellor-Crummey/Scott (MCS)
- Craig-Landin-Hagersten (CLH)

* Adding other features

—timeout
— hierarchical locks
— reader-writer locks

Simple test&set lock

lock: {0,1}; initially O

try, exit;
waitfor(test&set(lock) = 0) lock .= 0
crit; rem,
e Simple

* _ow space cost
» But lots of network traffic if highly contended

many processes waiting
for lock to become free

Simple test&set lock

P

P3

t&s

P4

Ps

Network (bus)

Mem

Mem

Mem

Mem

Simple test&set lock

P

P3

regX

P4

Ps

Network (bus)

Mem

Mem

Mem

Mem

Simple test&set lock

P

P3

P4

Ps

Network (bus)

Mem

Mem

Mem

Mem

Simple test&set lock

P

P3

t&s

P4

Ps

t&s

t&s

Network (bus)

Mem

Mem

Mem

Mem

Simple test&set lock

P

P3

regX

P4

Ps

regX

regX

Network (bus)

Mem

Mem

Mem

Mem

Simple test&set lock

P

P3

1

P4

Ps

regX

regX

Network (bus)

Mem

Mem

Mem

Mem

Simple test&set lock

P

P3

P4

Ps

regX

Network (bus)

Mem

Mem

Mem

Mem

Simple test&set lock

P

P3

t&s

t&s

P4

Ps

t&s

regX

Network (bus)

Mem

Mem

Mem

Mem

Simple test&set lock

P

P3

t&s

t&s

P4

Ps

Network (bus)

Mem

Mem

Mem

Mem

Simple test&set lock

P

P3

P4

Ps

Network (bus)

Mem

Mem

Mem

Mem

Simple test&set lock

w(0)

P

P3

P4

Ps

Network (bus)

Mem

Mem

Mem

Mem

Simple test&set lock

regX

P

P3

P4

Ps

Network (bus)

Mem

Mem

Mem

Mem

Simple test&set lock

P

P3

P4

Ps

Network (bus)

Mem

Mem

Mem

Mem

Simple test&set lock

Mem

Mem

Mem

Mem

Mem

P3

$

$

Network (bus)

Test-and-test&set lock

» dealing with high contention

- test-and-test&set

* read before attempting test&set
 reduces network traffic (but it's still high!)

Test-and-test&set lock

P,

P

P3

1

P4

Ps

Network (bus)

Mem

Mem

Mem

Mem

Test-and-test&set lock

P,

w(0)

P

P3

1

P4

Ps

Network (bus)

Mem

Mem

Mem

Mem

Test-and-test&set lock

P,

P

P3

P4

Ps

Network (bus)

Mem

Mem

Mem

Mem

Test-and-test&set lock

P,

P

P3

read

read

P4

Ps

read

read

Network (bus)

Mem

Mem

Mem

Mem

Test-and-test&set lock

P, P, P P, Ps
t&s t&s t&s t&s
0) 0 0 0 0
Network (bus)
Mem Mem Mem Mem

Simple test&set lock with backoff

» dealing with high contention

- test-and-test&set

* read before attempting test&set
 reduces network traffic (but it's still high!)

- test&set with backoff

o if test&set “fails” (returns 1), wait before trying again
- reduces network traffic (both read and write)
» exponential backoff seems to work best

* obviates need for test-and-test&set

Ticket lock

next: integer; initially O
granted: integer; initially O

try, exit;
ticket := f&i(next) f&i(granted)
waitfor(granted = ticket) rem,

crit;

» simple, low space cost, no bypass

» network traffic similar to test-and-test&set (why?)
- not quite as bad though

» can use backoff: but delay potentially more costly

- proportional backoff seems best
* delay depends on difference between ticket and granted

Array-based queue locks

* Each process spins on a different location

- reduces invalidation traffic
e each entry in array must be in separate cache line

- high space cost: one location (cache line) per lock per process
* not adaptive

Anderson lock

slots: array[0..N-1] of { front, not_front };
initially (front, not_front, not_front,..., not_front)
next_slot: integer; initially O

try; exit;
my_slot .= f&i(next_slot) slots[my_slot] := not_front
waitfor(slots[my _slot] = front) slots[my_slot+1] := front
crit; rem;

 entries either “front” or “not-front” (of queue)
— exactly one “front” (except for short interval in exit region)
» tail of queue indicated by next_slot

- queue is empty if next_slot contains front

Anderson lock

slots: array[0..N-1] of { front, not_front };
initially (front, not_front, not_front,..., not_front)
next_slot: integer; initially O

try, exit;
my_slot .= f&i(next_slot) slots[my_slot] := not_front
ifmy slotmod N=0 slots[my_slot+1 mod N] := front
atomic_add(next_slot, -N) rem,

my_slot ;= my_slot mod N
waitfor(slots[my _slot] = front)
crit;

Graunke/Thakkar lock

lockval: array[1..N] of {0,1}; initially all 1

tail: (1..N, {0,1}); initially (X,0) (X means “don't care”)

try; exit
(pred,locked) := swap(tail,(i,lockval[i])) lockval[i] := 1-lockvall[i]
waitfor(lockval[pred] # locked) rem

crit;

» each entry belongs to some process (single-writer)
— contains a bit indicating whether in T or C, or done
- meaning of bit toggles
» tail contains last process in queue and meaning of bit

- could use pointer instead of process name for linked list
- but can't use “node” for other purposes (why?)

Mellor-Crummey/Scott lock

“probably the most influential practical mutual exclusion
algorithm of all time.” -- 2006 Dijkstra Prize citation

each process has its own “node”

- but others may write its node

- spin only on local node (good for “cacheless” architectures)
» can ‘reuse” node for different locks (or free space)

- space overhead: O(L+N) or O(L+kN), k = #locks held at once
- can allocate nodes as needed (typically thread creation)

e can spin on exit

Mellor-Crummey/Scott lock

node: array[1..N] of [next: 0..N, wait: Boolean]; initially arbitrary
tail: 0..N; initially O

try, exit;
node[i].next :=0 if node[i].next =0
pred := swap(tail,i) if CAS(tail,i,0) return
if pred #0 waitfor(node[i].next # 0)
node]i].wait := true node[node[i].next].wait := false
node[pred].next ;= | rem,
waitfor(7node]i].wait)
crit;

» as with GT, use array to model nodes
* CAS: change value, return true if expected value found

- alternatively, return value seen regardless

Mellor-Crummey/Scott lock

try, exit;
node[i].next .= 0 If node[i]l.next =0
pred := swap(tail,i) if CAS(tail,i,0) return
if pred # 0 waitfor(nodeJi].next # 0)
node]i].wait := true node[node[i].next].wait := false
node[pred].next ;= | rem;
waitfor("node]i].wait)
crit;
tail

/]

Mellor-Crummey/Scott lock

try; exit,
node[i].next .= 0 If node[i]l.next =0
pred := swap(tail,i) if CAS(tail,i,0) return
if pred # 0 waitfor(nodeJi].next # 0)
node]i].wait := true node[node[i].next].wait := false
node[pred].next ;= | rem;
waitfor("node]i].wait)
crit;
tail
ode|[1]

/]

P,inC

Mellor-Crummey/Scott lock

try, exit;
node]i].next := 0 if nodeJi].next =0
pred := swap(tail,i) if CAS(tail,i,0) return
if pred # 0 waitfor(nodeJi].next # 0)
node[i].wait := true node[node[i].next].wait := false
node[pred].next ;= | rem;
waitfor("node]i].wait)
crit;
tail

ode[1] node[4]
V4 V4

P,inC

Mellor-Crummey/Scott lock

try; exit,
node[i].next .= 0 If node[i]l.next =0
pred := swap(tail,i) if CAS(tail,i,0) return
if pred # 0 waitfor(nodeJi].next # 0)
node]i].wait := true node[node[i].next].wait := false
node[pred].next ;= | rem;
waitfor("node]i].wait)
crit;
tail
node node[4]

A, Y/

P,inC pred,

Mellor-Crummey/Scott lock

try; exit,
node[i].next .= 0 If node[i]l.next =0
pred := swap(tail,i) if CAS(tail,i,0) return
if pred # 0 waitfor(nodeJi].next # 0)
node[i].wait := true node[node[i].next].wait := false
node[pred].next ;= | rem;
waitfor("node]i].wait)
crit;
tail
node node[4]

/. T/

P,inC pred,

Mellor-Crummey/Scott lock

try; exit,
node[i].next .= 0 If node[i]l.next =0
pred := swap(tail,i) if CAS(tail,i,0) return
if pred # 0 waitfor(nodeJi].next # 0)
node]i].wait := true node[node[i].next].wait := false
node[pred].next ;=i rem;
waitfor("node]i].wait)
crit;
tail
node node[4]

? >TM

P,inC pred,

Mellor-Crummey/Scott lock

try; exit,
node[i].next .= 0 If node[i]l.next =0
pred := swap(tail,i) if CAS(tail,i,0) return
if pred # 0 waitfor(nodeJi].next # 0)
node]i].wait := true node[node[i].next].wait := false
node[pred].next ;= | rem;
waitfor("node]i].wait)
crit;
tail
node node[4]

? >TM

P,inC P, waiting

Mellor-Crummey/Scott lock

try, exit;
node[i].next .= 0 If node[i]l.next =0
pred := swap(tail,i) if CAS(tail,i,0) return
if pred # 0 waitfor(nodeJi].next # 0)
node]i].wait := true node[node[i].next].wait := false
node[pred].next ;= | rem;
waitfor("node]i].wait)
crit;
tail

—

Mode[ﬁ’)]
? > T > T ‘7|

P,inC P, waiting P3 waiting

Mellor-Crummey/Scott lock

try, exit;
node[i].next .= 0 If node[i]l.next =0
pred := swap(tail,i) if CAS(tail,i,0) return
if pred # 0 waitfor(nodeJi].next # 0)
node]i].wait := true node[node[i].next].wait := false
node[pred].next ;= | rem;
waitfor("node]i].wait)
crit;
tail

—

Mode[’s]
? > F > T ‘7|

P, waiting P3 waiting

Mellor-Crummey/Scott lock

try, exit;
node[i].next .= 0 If node[i]l.next =0
pred := swap(tail,i) if CAS(tail,i,0) return
if pred # 0 waitfor(nodeJi].next # 0)
node]i].wait := true node[node[i].next].wait := false
node[pred].next ;= | rem;
waitfor(7node]i].wait)
crit;
tail

—

Mode[’s]
? > F > T ‘7|

P,inC P3 waiting

Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially O

local to i: my _node: O..N; initially |

tl‘yi eXiti
node[my_node] := wait node[my node] := done
pred := swap(tail,my_node) my_node := pred
waitfor(node[pred] = done) rem

crit;

 eliminates spinning on exit by looking at pred node

- list is linked “backwards” (only implicitly via local pred)
- needs one node always at lock; take predecessor on exit

- not good on cacheless architectures

Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially O

local to i: my _node: O..N; initially |

tl‘yi eXiti
node[my_node] := wait node[my node] := done
pred := swap(tail,my_node) my_node := pred
waitfor(node[pred] = done) rem
crit;
tail
/
node|[0]

Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially O

local to i: my _node: O..N; initially |

tl‘yi eXiti
node[my_node] := wait node[my node] := done
pred := swap(tail,my_node) my_node := pred
waitfor(node[pred] = done) rem
crit;
tail
/
node[0] node[1]

d ?

Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially O

local to i: my _node: O..N; initially |

tl‘yi eXiti
node[my node] := wait node[my node] := done
pred := swap(tail,my_node) my_node := pred
waitfor(node[pred] = done) rem
crit;
tail
/
node[0] node[1]

d W

local to i: my _node: O..N; initially |

try;

node[my node] := wait
pred := swap(tail,my_node)

Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially O

waitfor(node[pred] = done)

crit;

node[0]

tail

N

n

<+— pred,

e[1]

eXiti
node[my node] := done
my_node := pred

rem,

local to i: my _node: O..N; initially |

tl‘yi

node[my node] := wait

Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially O

pred := swap(tail,my_node)
waitfor(node[pred] = done)

crit;

node[0]

tail

N

n

<+— pred,

e[1]

P,inC

eXiti
node[my node] := done
my_node := pred

rem,

Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially O

local to i: my _node: O..N; initially |

tl‘yi eXiti
node[my node] := wait node[my node] := done
pred := swap(tail,my_node) my_node := pred
waitfor(node[pred] = done) rem
crit;
tail
node|[0] node[1] ode[4]

d *<—pred, (W[e¢—pred, |W
P,inC P, waiting

Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially O

local to i: my _node: O..N; initially |

tl‘yi eXiti
node[my_node] := wait node[my node] := done
pred := swap(tail,my_node) my_node := pred
waitfor(node[pred] = done) rem
crit;
tail
node|[0] node[1] ode[4]

d <—pred, (d[<¢—pred, |W
P, waiting

Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially O

local to i: my _node: O..N; initially |

tl‘yi eXiti
node[my node] := wait node[my node] := done
pred := swap(tail,my_node) my_node := pred
waitfor(node[pred] = done) rem
crit;
tail
node[1] ode[4]

d <*—pred, (W
P, waiting

Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially O

local to i: my _node: O..N; initially |

tl‘yi eXiti
node[my node] := wait node[my node] := done
pred := swap(tail,my_node) my_node := pred
waitfor(node[pred] = done) rem
crit;
tail

Mew

d <*—pred, (W
P, waiting

Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially O

local to i: my _node: O..N; initially |

tl‘yi eXiti
node[my_node] := wait node[my node] := done
pred := swap(tail,my_node) my_node := pred
waitfor(node[pred] = done) rem
crit;
tail
node[1] ode[4]

d <*—pred, (W
P,inC

Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially O

local to i: my _node: O..N; initially |

tl‘yi eXiti
node[my_node] := wait node[my node] := done
pred := swap(tail,my_node) my_node := pred
waitfor(node[pred] = done) rem
crit;
tail E31 using node[0]
node[1] ode[4] node[0]

d€—pred, |W|<*— pred; |W
P,inC P4 waiting

Additional lock features

* Timeout (of waiting for lock)

- well-formedness implies you are stuck once you start trying
- may want to bow out (to reduce contention?) if taking too long

—how can we do this?
» easy for test&set locks; harder for queue locks (including ticket lock)

 Hierarchical locks

- if machine is hierarchical, and critical section protects data, it may
be better to schedule “nearby” processes consecutively

 Reader/writer locks

—readers don't conflict, so many readers can be “critical” together
- especially important for “long” critical sections

Generalized resource allocation

* Two ways to generalize mutual exclusion

- resource spec: different users need different subsets of resources
e can't share: users with intersecting sets exclude each other
— exclusion spec: incompatible sets of users

e more general (any resource spec can be written as exclusion spec)
« Sample problems
- Dining Philosophers (Dijkstra)
- k-exclusion (any k users okay, but not k+1)
- reader/writer locks

 need further generalization: distinguish different user operations

Generalized resource allocation

* Dining Philosophers
- neighboring philosophers share a fork
- need fork on both sides to eat
- no one should starve
- can't solve without some symmetry breaking (why?)

— solutions:

* number forks around the table; get “smaller” fork first
e left-right algorithm

» Generalize to solve any resource allocation problem
- nodes represent resources

- edge between resources if some user needs both
- color graph; order colors

