
  

6.852 Lecture 15

● Pragmatic issues for shared-memory multiprocessors

● Practical mutual exclusion algorithms
– test-and-set locks

– queue locks

● Generalized exclusion/resource allocation problems

● Reading:
– Mellor-Crummey and Scott paper (Dijkstra prize winner)

– Magnussen, Landin, Hagersten paper

– Chapter 11



  

Next time

● Consensus

● Reading: Chapter 12



  

Mutual exclusion with RMW

● Quick review
– shared-memory multiprocessors provide “atomic operations”

● test&set, fetch&increment, swap, compare&swap (CAS), LL/SC

– in practice, all mutual exclusion algorithms use these operations
● one-variable test&set algorithm
● queue lock: one queue with enqueue, dequeue and head

– multiprocessors do not support queues in hardware
● ticket lock algorithm: two fetch&inc variables



  

A note on terminology

● Different usage in “systems” and “theory” communities
– blocking: yields processor

– atomic operation: some kind of read-modify-write operation

– implement: provide specified functionality??

– simulation: experiment, or running on a (hardware) simulator

– process vs thread

– locks vs mutual exclusion

● Different emphasis and concerns
– mechanism vs. abstraction: processors, locks, blocking

– performance issues: caching, contention, etc.



  

Mutual exclusion in practice

● What to do when lock is taken
– “block”: deschedule process (yield processor)

● OS reschedules it in future, often when some condition is satisfied

– busy-wait/spin
● don't yield process: repeatedly test for some condition
● should be used only if waiting is expected to be very short

The choice of blocking vs spinning applies 
to other synchronization constructs, 

such as producer-consumer and barriers.



  

Mutual exclusion in practice

● Spin locks are very important
– used in OS kernels

● Assume critical sections are very short
– typically not nested (hold only one lock at a time)

● Performance is critical
– must consider caching and contention effects

– adaptive requirements/performance



  

Shared-memory multiprocessors
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Shared-memory multiprocessors

● Memory access does not have uniform cost
– next-level cache access is ~10x more expensive

– remote-memory access produces network traffic
● network bandwidth can be bottleneck

– writes invalidate caches
● every processor that wants to read must request again
● can typically share read access

– all memory is multiwriter, but most is reserved for a process



  

Mutual exclusion in practice

● Critical sections are very short
– typically hold only one lock at a time

– critical processes are not swapped out
● assume no multiprogramming for now (one thread per processor) 

● Caching and contention are important



  

Practical spin locks

● Test&set locks

● Ticket lock

● Queue locks
– Anderson

– Graunke/Thakkar

– Mellor-Crummey/Scott (MCS)

– Craig-Landin-Hagersten (CLH)

● Adding other features
– timeout

– hierarchical locks

– reader-writer locks



  

Simple test&set lock

● Simple

● Low space cost

● But lots of network traffic if highly contended

tryi

  waitfor(test&set(lock) = 0)
criti

exiti
  lock := 0
remi

lock: {0,1}; initially 0

many processes waiting 
for lock to become free
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Test-and-test&set lock
● dealing with high contention

– test-and-test&set
● read before attempting test&set
● reduces network traffic (but it's still high!)
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Simple test&set lock with backoff
● dealing with high contention

– test-and-test&set
● read before attempting test&set
● reduces network traffic (but it's still high!)

– test&set with backoff
● if test&set “fails” (returns 1), wait before trying again

– reduces network traffic (both read and write)
● exponential backoff seems to work best
● obviates need for test-and-test&set



  

Ticket lock

tryi

  ticket := f&i(next)
  waitfor(granted = ticket)
criti

exiti
  f&i(granted)
remi

next: integer; initially 0
granted: integer; initially 0

● simple, low space cost, no bypass

● network traffic similar to test-and-test&set (why?)
– not quite as bad though

● can use backoff: but delay potentially more costly
– proportional backoff seems best

● delay depends on difference between ticket and granted



  

Array-based queue locks

● Each process spins on a different location
– reduces invalidation traffic

● each entry in array must be in separate cache line

– high space cost: one location (cache line) per lock per process
● not adaptive



  

Anderson lock

tryi

  my_slot := f&i(next_slot)
  waitfor(slots[my_slot] = front)
criti

exiti
  slots[my_slot] := not_front
  slots[my_slot+1] := front
remi

slots: array[0..N-1] of { front, not_front };
    initially (front, not_front, not_front,..., not_front)
next_slot: integer; initially 0

● entries either “front” or “not-front” (of queue)
– exactly one “front” (except for short interval in exit region)

● tail of queue indicated by next_slot
– queue is empty if next_slot contains front



  

Anderson lock

tryi

  my_slot := f&i(next_slot)
  if my_slot mod N = 0
    atomic_add(next_slot, -N)
  my_slot := my_slot mod N
  waitfor(slots[my_slot] = front)
criti

exiti
  slots[my_slot] := not_front
  slots[my_slot+1 mod N] := front
remi

slots: array[0..N-1] of { front, not_front };
    initially (front, not_front, not_front,..., not_front)
next_slot: integer; initially 0



  

Graunke/Thakkar lock

tryi

  (pred,locked) := swap(tail,(i,lockval[i]))
  waitfor(lockval[pred] ≠ locked)
criti

exiti
  lockval[i] := 1-lockval[i]
remi

lockval: array[1..N] of {0,1}; initially all 1
tail: (1..N, {0,1}); initially (X,0)                   (X means “don't care”)

● each entry belongs to some process (single-writer)
– contains a bit indicating whether in T or C, or done

– meaning of bit toggles

● tail contains last process in queue and meaning of bit
– could use pointer instead of process name for linked list

– but can't use “node” for other purposes (why?) 



  

Mellor-Crummey/Scott lock

● each process has its own “node”
– but others may write its node

– spin only on local node (good for “cacheless” architectures)

● can “reuse” node for different locks (or free space)
– space overhead: O(L+N) or O(L+kN), k = #locks held at once

– can allocate nodes as needed (typically thread creation)

● can spin on exit

“probably the most influential practical mutual exclusion 
algorithm of all time.”    -- 2006 Dijkstra Prize citation



  

Mellor-Crummey/Scott lock

tryi

  node[i].next := 0
  pred := swap(tail,i)
  if pred ≠ 0
    node[i].wait := true
    node[pred].next := i
    waitfor(¬node[i].wait)
criti

exiti
  if node[i].next = 0
    if CAS(tail,i,0) return
    waitfor(node[i].next ≠ 0)
  node[node[i].next].wait := false
remi

node: array[1..N] of [next: 0..N, wait: Boolean]; initially arbitrary
tail: 0..N; initially 0

● as with GT, use array to model nodes

● CAS: change value, return true if expected value found
– alternatively, return value seen regardless



  

Mellor-Crummey/Scott lock

tail

tryi

  node[i].next := 0
  pred := swap(tail,i)
  if pred ≠ 0
    node[i].wait := true
    node[pred].next := i
    waitfor(¬node[i].wait)
criti

exiti
  if node[i].next = 0
    if CAS(tail,i,0) return
    waitfor(node[i].next ≠ 0)
  node[node[i].next].wait := false
remi



  

Mellor-Crummey/Scott lock
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Mellor-Crummey/Scott lock
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Mellor-Crummey/Scott lock
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tryi

  node[i].next := 0
  pred := swap(tail,i)
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Craig/Landin/Hagersten lock

tryi

  node[my_node] := wait
  pred := swap(tail,my_node)
  waitfor(node[pred] = done)
criti

exiti
  node[my_node] := done
  my_node := pred
remi

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i

● eliminates spinning on exit by looking at pred node
– list is linked “backwards” (only implicitly via local pred)

– needs one node always at lock; take predecessor on exit

– not good on cacheless architectures



  

Craig/Landin/Hagersten lock

tryi

  node[my_node] := wait
  pred := swap(tail,my_node)
  waitfor(node[pred] = done)
criti

exiti
  node[my_node] := done
  my_node := pred
remi

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i

tail

d
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Craig/Landin/Hagersten lock

tryi

  node[my_node] := wait
  pred := swap(tail,my_node)
  waitfor(node[pred] = done)
criti

exiti
  node[my_node] := done
  my_node := pred
remi

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
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Craig/Landin/Hagersten lock

tryi

  node[my_node] := wait
  pred := swap(tail,my_node)
  waitfor(node[pred] = done)
criti

exiti
  node[my_node] := done
  my_node := pred
remi

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
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Craig/Landin/Hagersten lock

tryi

  node[my_node] := wait
  pred := swap(tail,my_node)
  waitfor(node[pred] = done)
criti

exiti
  node[my_node] := done
  my_node := pred
remi

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
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Craig/Landin/Hagersten lock

tryi

  node[my_node] := wait
  pred := swap(tail,my_node)
  waitfor(node[pred] = done)
criti

exiti
  node[my_node] := done
  my_node := pred
remi
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tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
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Craig/Landin/Hagersten lock

tryi

  node[my_node] := wait
  pred := swap(tail,my_node)
  waitfor(node[pred] = done)
criti

exiti
  node[my_node] := done
  my_node := pred
remi

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
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Craig/Landin/Hagersten lock

tryi

  node[my_node] := wait
  pred := swap(tail,my_node)
  waitfor(node[pred] = done)
criti

exiti
  node[my_node] := done
  my_node := pred
remi

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
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Craig/Landin/Hagersten lock

tryi

  node[my_node] := wait
  pred := swap(tail,my_node)
  waitfor(node[pred] = done)
criti

exiti
  node[my_node] := done
  my_node := pred
remi

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i

tail
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Craig/Landin/Hagersten lock

tryi

  node[my_node] := wait
  pred := swap(tail,my_node)
  waitfor(node[pred] = done)
criti

exiti
  node[my_node] := done
  my_node := pred
remi

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i

tail

d

node[1]

w

node[4]
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P4 waiting



  

Craig/Landin/Hagersten lock

tryi

  node[my_node] := wait
  pred := swap(tail,my_node)
  waitfor(node[pred] = done)
criti

exiti
  node[my_node] := done
  my_node := pred
remi

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i

tail

d

node[1]

w

node[4]

pred4
P4 in C



  

Craig/Landin/Hagersten lock

tryi

  node[my_node] := wait
  pred := swap(tail,my_node)
  waitfor(node[pred] = done)
criti

exiti
  node[my_node] := done
  my_node := pred
remi

node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i

tail

d

node[1]

w

node[4]

pred4
P4 in C

w

node[0]

pred1
P1 waiting

P1 using node[0]



  

Additional lock features

● Timeout (of waiting for lock)
– well-formedness implies you are stuck once you start trying

– may want to bow out (to reduce contention?) if taking too long

– how can we do this?
● easy for test&set locks; harder for queue locks (including ticket lock)

● Hierarchical locks
– if machine is hierarchical, and critical section protects data, it may 

be better to schedule “nearby” processes consecutively

● Reader/writer locks
– readers don't conflict, so many readers can be “critical” together

– especially important for “long” critical sections



  

Generalized resource allocation

● Two ways to generalize mutual exclusion
– resource spec: different users need different subsets of resources

● can't share: users with intersecting sets exclude each other

– exclusion spec: incompatible sets of users
● more general (any resource spec can be written as exclusion spec)

● Sample problems
– Dining Philosophers (Dijkstra)

– k-exclusion (any k users okay, but not k+1)

– reader/writer locks
● need further generalization: distinguish different user operations



  

Generalized resource allocation
● Dining Philosophers

– neighboring philosophers share a fork

– need fork on both sides to eat

– no one should starve

– can't solve without some symmetry breaking (why?)

– solutions:
● number forks around the table; get “smaller” fork first
● left-right algorithm

● Generalize to solve any resource allocation problem
– nodes represent resources

– edge between resources if some user needs both

– color graph; order colors


