
  

6.852 Lecture 14 (continued)

● Mutual exclusion with read/write memory (continued)
– Burns' algorithm

– lower bound on number of registers

● Algorithms with read-modify-write operations
– test-and-set locks; queue locks

– pragmatic issues: contention, caching

– practical algorithms (to be continued)

● Reading:
– Chapter 10

– Mellor-Crummey and Scott paper (Dijkstra prize winner)

– Magnussen, Ladin, Hagersten paper



  

Next time

● Continue practical mutual exclusion algorithms

● Generalized resource allocation/exclusion problems

● Reading: Chapter 11



  

Space/memory considerations

● All previous algorithms use more than n variables
– Bakery could use just n variables (why?)

● All but Bakery use multiwriter variables
– these can be expensive to implement

● Bakery algorithm uses infinite-size variables
– difficult to adapt to use finite-size variables

● Can we do better?



  

Burns' algorithm

● Uses n single-writer binary variables

● Simple

● Guarantees safety (mutual exclusion) and progress
– but not starvation-freedom!



  

Burns' algorithm

tryi

  for j = 1 to i-1 do
    if flag(j) = 1 then goto L
  flag(i) := 1
  for j = 1 to i-1 do
    if flag(j) = 1 then
      flag(i) := 0
      goto L
  for j = i+1 to n do
    if flag(j) = 1 then goto M
criti

L:

M:

exiti
  flag(i) := 0
remi

minor change from book



  

Burns' algorithm

● Mutual exclusion:
– if two processes in critical section simultaneously, who set flag 

to 1 (for the last time) first?

● Progress:
– assume fair execution (everyone trying keeps taking steps)

– if someone trying but no one is ever subsequently critical, 
someone eventually reaches M (why?)

– anyone reaching M never falls back

– someone who reaches M eventually becomes critical (why?)



  

Lower bound on registers

● Can we use fewer than n registers?
– not if single-writer (why?)

– not even if multiwriter!



  

Lower bound on registers

● Need at least 2 registers (if n > 1): by contradiction
– before entering C, a process must write shared register

● otherwise, no one else would know it entered C

– run one process solo until just before it writes shared register
● process covers the register

– run second process until it enters C
● can do so because it can't tell first process has run at all

– continue first process, overwriting shared register
● no more evidence of second process in C
● first process enters C (contradicting mutual exclusion!)



  

Lower bound on registers

● Need at least 3 registers (if n > 2)?
– run first process solo until just before it writes a register (x)

– run second process until just before it writes other register (y)
● must do so, or else run till enter C, then run first process, as before

– run third process until it enters C...



  

Lower bound on registers

● Need at least 3 registers (if n > 2)?
– run first process solo until just before it writes a register (x)

– run second process until just before it writes other register (y)
● must do so, or else run till enter C, then run first process, as before

– run third process until it enters C...

may see that second process wrote x, 
and so not enter C



  

Lower bound on registers

● Need at least 3 registers (if n > 2)?
– run first process solo until just before it writes a register (x)

– run second process until just before it writes other register (y)
● must do so, or else run till enter C, then run first process, as before

– run third process until it enters C...

may see that second process wrote x, 
and so not enter C

Need some way to get two processes to cover both registers
in a state indistinguishable from an idle state to a third process



  

Lower bound on registers

● Idea: one process acquires lock three times
– at least two times, first register (x) written is the same

– use first time to get second process to cover other register (y)

– then acquire lock and return to apparently idle state

– then cover x again

1 first covers
a register (x)

C,E,R,T C,E,R,T

1 covers a
register (y?)

1 covers a
register (x?)

2 first covers y



  

Lower bound on registers

● Idea: one process acquires lock three times
– at least two times, first register (x) written is the same

– use first time to get second process to cover other register (y)

– then acquire lock and return to apparently idle state

– then cover x again

1 first covers x

C,E,R,T

2 first covers y 1 covers y 1 covers x

C,E,R,T

2 still covers ylooks idle to all but 2



  

Lower bound on registers

● Lemma 1: Process i can reach C from any (reachable) 
idle state s (and any states indistinguishable to i) 
without any steps by other process.
– by progress condition

● Lemma 2: If execution fragment α has only steps of i 
and i starts in R and ends in C, then i writes some 
shared register not covered by any other process.
– otherwise other processes can eliminate any evidence of i

– one of them must enter C (by progress)

– contradicts mutual exclusion (because i also in C)



  

Lower bound on registers

● Defn: s' is k-reachable from s if there is an exec frag 
from s to s' involving only steps by procs 1 to k.

● Lemma 3: For any k ∈ [1,n-1] and from any idle state, 
there is a k-reachable state in which procs 1 to k cover 
k distinct shared registers and that is indistinguishable 
to procs k+1 to n from some k-reachable idle state.
– By induction on k.

– Base case (k=1):
● run proc 1 until just before it writes first shared register



  

Lower bound on registers

● Lemma 3: For any k ∈ [1,n-1] and from any idle state, there is a 
k-reachable state in which procs 1 to k cover k distinct shared 
registers and that is indistinguishable to procs k+1 to n from some 
k-reachable idle state.

– Inductive step: Assume lemma for k < n-1; prove for k+1.

● Let t1 be state guaranteed by inductive hypothesis.

● Let each process from 1 to k take a step, overwriting covered register.

● Run all processes 1 to k until each is in R; resulting state u1 is idle.

● Repeat, generating t2, u2, t3, u3, etc., until we get ti and tj (i < j) that cover 
same set X of registers (why is this guaranteed to terminate?)

● Run k+1 alone from ti until just before it writes a register not in X.

● Run all processes 1 to k as if from ti to tj (they can't tell the difference)

● Result indistinguishable from tj (and thus the idle state) to procs k+2 to n.



  

Lower bound on registers

● Lemma 1: Process i can reach C from any (reachable) idle state s (and any 
states indistinguishable to i) without any steps by other process.

● Lemma 2: If execution fragment has only steps of i and i starts in R and ends 
in C, then i writes some shared register not covered by any other process.

● Lemma 3: For any k ∈ [1,n-1] and from any idle state, there is a k-reachable 
state in which procs 1 to k cover k distinct shared registers and that is 
indistinguishable to procs k+1 to n from some k-reachable idle state.

● Theorem: Any algorithm that solves n-process mutual 
exclusion with only read/write shared registers needs at 
least n of them.
– By Lemma 3 from initial state, get state in which n-1 registers 

are covered and is indistinguishable from idle state to n.

– By Lemma 1, n can reach C from this state (in which n is in R).

– By Lemma 2, n must write some register not covered.



  

What lower bounds are good for

● At Bell Labs (several years ago), Gadi Taubenfeld 
found out Unix group was trying to develop an asynch 
mutual exclusion algorithm that used only a few r/w 
shared registers.  He told them it was impossible.

● New research direction: Develop “space-adaptive” 
algorithms that potentially use many variables, but use 
few if only few processes are active (or “contend”).

● Also “time-adaptive” algorithms.

● In practice, this often means you can get much better 
performance/lower overhead.



  

Mutual exclusion with RMW

● Stronger memory primitives
– test-and-set, fetch-and-increment, swap, compare-and-swap, 

load-linked/store-conditional

– all modern architectures provide one or more of these
● called “synchronization primitives” or “atomic primitives”
● typically expensive compared to reads and writes

– but atomic reads and writes are also expensive
● variables can also be read and written

– not all the same strength: we'll come back to this in 2 weeks

– does it enable better algorithms?



  

Mutual exclusion with RMW

● Test-and-set algorithm (trivial)
– test-and-set: sets value to 1, returns previous value

● usually on binary variables

– one variable, 0 when unlocked (initial state), 1 when locked

– to acquire lock, repeatedly test-and-set until get 0

– to release lock, set variable to 0

– no fairness

tryi

  waitfor(test-and-set(x) = 0)
criti

exiti
  x := 0
remi



  

Mutual exclusion with RMW

● Queue lock
– shared variable: Q: a FIFO queue

● supports enqueue, dequeue, head operations
● very big variable!

– to acquire lock, add self to queue, wait until you're at head

– to release lock, remove self from queue

– guarantees bounded bypass (indeed, no bypass)

tryi

  enqueue(Q,i)
  waitfor(head(Q) = i)
criti

exiti
  dequeue(Q)
remi



  

Mutual exclusion with RMW

● Ticket lock
– like Bakery algorithm: get a number, wait till it's your turn

● guarantees bounded bypass (indeed, no bypass)

– shared variables: next, granted: integers, initially 0
● supports fetch-and-increment (f&i)

– to acquire lock, increment next, wait till granted

– to release lock, increment granted

tryi

  ticket := f&i(next)
  waitfor(granted = ticket)
criti

exiti
  f&i(granted)
remi



  

Mutual exclusion with RMW

● Ticket lock
– like Bakery algorithm: get a number, wait till it's your turn

● guarantees bounded bypass (indeed, no bypass)

– shared variables: next, granted: integers, initially 0
● can we make these bounded in size?  what bound?

tryi

  ticket := f&i(next)
  waitfor(granted = ticket)
criti

exiti
  f&i(granted)
remi



  

Mutual exclusion with RMW

● How small can we make the RMW variable?
– one bit if only require progress (test-and-set algorithm)

–Θ(n) values (Θ(log n) bits) for bounded bypass

● actually we know at least n values; can do in n+k for small k

– for starvation-freedom, it's harder:
● lower bound of about √n
● algorithm for n/2 + k, for small k

In practice, on a real shared-memory multiprocessor,
we want few variables of size O(log n).

So ticket algorithm is pretty good (in terms of space).


