6.852 Lecture 14 (continued)

* Mutual exclusion with read/write memory (continued)

- Burns' algorithm
- lower bound on number of registers

» Algorithms with read-modify-write operations

- test-and-set locks; queue locks
— pragmatic issues: contention, caching
— practical algorithms (to be continued)
* Reading:
- Chapter 10
- Mellor-Crummey and Scott paper (Dijkstra prize winner)
- Magnussen, Ladin, Hagersten paper



Next time

» Continue practical mutual exclusion algorithms
» Generalized resource allocation/exclusion problems

» Reading: Chapter 11



Space/memory considerations

 All previous algorithms use more than n variables
- Bakery could use just n variables (why?)

* All but Bakery use multiwriter variables
—these can be expensive to implement

» Bakery algorithm uses infinite-size variables
— difficult to adapt to use finite-size variables

» Can we do better?



Burns' algorithm

» Uses n single-writer binary variables
e Simple
» Guarantees safety (mutual exclusion) and progress

- but not starvation-freedom!



Burns' algorithm

try, exit;
L: forj=1toi-1do flag(i) := 0
if flag(j) = 1 then goto L rem
flag(i) := 1

forj=1toi-1do
iIf flag(j) = 1 then
flag(i) := 0
goto L - minor change from book
M. forj=i+1tondo
if flag(j) = 1 then goto M
crit;




Burns' algorithm

e Mutual exclusion:

—if two processes in critical section simultaneously, who set flag
to 1 (for the last time) first?

* Progress:

—assume fair execution (everyone trying keeps taking steps)

- if someone trying but no one is ever subsequently critical,
someone eventually reaches M (why?)

—anyone reaching M never falls back
- someone who reaches M eventually becomes critical (why?)



Lower bound on registers

» Can we use fewer than n registers?
- not if single-writer (why?)
- not even if multiwriter!



Lower bound on registers

* Need at least 2 registers (if n > 1): by contradiction

- before entering C, a process must write shared register
» otherwise, no one else would know it entered C

—run one process solo until just before it writes shared register
 process covers the register

—run second process until it enters C
 can do so because it can't tell first process has run at all

— continue first process, overwriting shared register

e N0 more evidence of second process in C
o first process enters C (contradicting mutual exclusion!)



Lower bound on registers

* Need at least 3 registers (if n > 2)7?

—run first process solo until just before it writes a register (x)

- run second process until just before it writes other register (y)
» must do so, or else run till enter C, then run first process, as before
—run third process until it enters C...



Lower bound on registers

* Need at least 3 registers (if n > 2)7?

—run first process solo until just before it writes a register (x)

- run second process until just before it writes other register (y)
» must do so, or else run till enter C, then run first process, as before
—run third process until it enters C...

may see that second process wrote x,
and so not enter C




Lower bound on registers

* Need at least 3 registers (if n > 2)7?

—run first process solo until just before it writes a register (x)

- run second process until just before it writes other register (y)
» must do so, or else run till enter C, then run first process, as before
—run third process until it enters C...

may see that second process wrote x,
and so not enter C

Need some way to get two processes to cover both registers
In a state indistinguishable from an idle state to a third process




Lower bound on registers

* |dea: one process acquires lock three times

- at least two times, first register (x) written is the same

- use first time to get second process to cover other register (y)
—then acquire lock and return to apparently idle state

—then cover x again

1 first covers 1 covers a 1 covers a
a register (x) register (y?) register (x?)
C.ERT C.ERT

2 first covers y




Lower bound on registers

* |dea: one process acquires lock three times

- at least two times, first register (x) written is the same

— use first time to get second process to cover other register (y)

—then acquire lock and return to apparently idle state

—then cover x again

1 first covers x 2 first covers y
C,E.RT

1 covers y

C.E,R,T

1 covers x

Ijooks idle to all but 2

2 still covers y:|




Lower bound on registers

 Lemma 1: Process i can reach C from any (reachable)
idle state s (and any states indistinguishable to i)
without any steps by other process.

- by progress condition

« Lemma 2: If execution fragment o has only steps of i

and i starts in R and ends in C, then i writes some
shared register not covered by any other process.

- otherwise other processes can eliminate any evidence of i
- one of them must enter C (by progress)
— contradicts mutual exclusion (because i also in C)



Lower bound on registers

* Defn: s' is k-reachable from s if there is an exec frag
from s to s' involving only steps by procs 1 to k.

« Lemma 3: For any k € [1,n-1] and from any idle state,
there is a k-reachable state in which procs 1 to k cover
kK distinct shared registers and that is indistinguishable
to procs k+1 to n from some k-reachable idle state.

- By induction on k.
- Base case (k=1):

e run proc 1 until just before it writes first shared register



Lower bound on registers

« Lemma 3: For any k € [1,n-1] and from any idle state, there is a
k-reachable state in which procs 1 to k cover k distinct shared
registers and that is indistinguishable to procs k+1 to n from some
k-reachable idle state.

- Inductive step: Assume lemma for k < n-1; prove for k+1.
- Let t; be state guaranteed by inductive hypothesis.

 Let each process from 1 to k take a step, overwriting covered register.
« Run all processes 1 to k until each is in R; resulting state u, is idle.

« Repeat, generating t,, uy, t3, us, etc., until we get t; and {; (i <j) that cover
same set X of registers (why is this guaranteed to terminate?)

« Run k+1 alone from t; until just before it writes a register not in X.
« Run all processes 1 to k as if from t; to {; (they can't tell the difference)

« Result indistinguishable from t; (and thus the idle state) to procs k+2 to n.



Lower bound on registers

« Lemma 1: Process i can reach C from any (reachable) idle state s (and any
states indistinguishable to i) without any steps by other process.

 Lemma 2: If execution fragment has only steps of i and i starts in R and ends
in C, then i writes some shared register not covered by any other process.

« Lemma 3: For any k € [1,n-1] and from any idle state, there is a k-reachable
state in which procs 1 to k cover k distinct shared registers and that is
indistinguishable to procs k+1 to n from some k-reachable idle state.

* Theorem: Any algorithm that solves n-process mutual
exclusion with only read/write shared registers needs at
least n of them.

- By Lemma 3 from initial state, get state in which n-1 registers
are covered and is indistinguishable from idle state to n.

- By Lemma 1, n can reach C from this state (in which nis in R).
- By Lemma 2, n must write some register not covered.



What lower bounds are good for

» At Bell Labs (several years ago), Gadi Taubenfeld
found out Unix group was trying to develop an asynch
mutual exclusion algorithm that used only a few r/w
shared registers. He told them it was impossible.

* New research direction: Develop “space-adaptive”
algorithms that potentially use many variables, but use
few if only few processes are active (or “contend”).

* Also “time-adaptive” algorithms.

* |n practice, this often means you can get much better
performance/lower overhead.



Mutual exclusion with RMW

» Stronger memory primitives

- test-and-set, fetch-and-increment, swap, compare-and-swap,
load-linked/store-conditional

- all modern architectures provide one or more of these

e called “synchronization primitives” or “atomic primitives”

e typically expensive compared to reads and writes
- but atomic reads and writes are also expensive
e variables can also be read and written

- not all the same strength: we'll come back to this in 2 weeks
- does it enable better algorithms?



Mutual exclusion with RMW

» Test-and-set algorithm (trivial)

- test-and-set: sets value to 1, returns previous value
 usually on binary variables
—one variable, 0 when unlocked (initial state), 1 when locked

—to acquire lock, repeatedly test-and-set until get 0
—to release lock, set variable to 0

- no fairness
’[I'yi eXiti
waitfor(test-and-set(x) = 0) x:=0

crit; rem;



Mutual exclusion with RMW

e Queue lock

- shared variable: Q: a FIFO queue

e supports enqueue, dequeue, head operations

e very big variable!
—to acquire lock, add self to queue, wait until you're at head
—to release lock, remove self from queue

- guarantees bounded bypass (indeed, no bypass)

tryi exiti
enqueue(Q,i) dequeue(Q)
waitfor(head(Q) = i) rem,

crit;



Mutual exclusion with RMW

e Ticket lock

- like Bakery algorithm: get a number, wait till it's your turn
 guarantees bounded bypass (indeed, no bypass)

- shared variables: next, granted: integers, initially O
* supports fetch-and-increment (f&i)

—to acquire lock, increment next, wait till granted

—to release lock, increment granted

try; exit
ticket := f&i(next) f&i(granted)
waitfor(granted = ticket) rem;

crit;



Mutual exclusion with RMW

e Ticket lock

- like Bakery algorithm: get a number, wait till it's your turn

 guarantees bounded bypass (indeed, no bypass)
- shared variables: next, granted: integers, initially O
» can we make these bounded in size? what bound?

try; exit
ticket := f&i(next) f&i(granted)
waitfor(granted = ticket) rem;

crit;



Mutual exclusion with RMW

« How small can we make the RMW variable?

—one bit if only require progress (test-and-set algorithm)
- 0(n) values (©(log n) bits) for bounded bypass

e actually we know at least n values; can do in n+k for small k
- for starvation-freedom, it's harder:

« lower bound of about Vn
e algorithm for n/2 + k, for small k

In practice, on a real shared-memory multiprocessor,
we want few variables of size O(log n).
So ticket algorithm is pretty good (in terms of space).




