

6.852 Lecture 10

● Minimum spanning tree
– Gallager-Humblet-Spira algorithm

● Reading: Chapter 15.5, Gallager-Humblet-Spira paper

Minimum spanning tree

● Assume
– undirected graph (i.e., bidirectional communication)

– distinct edge weights

– size and diameter unknown

– can identify in- and out-edges to same neighbor

● Problem:
– find minimum spanning tree

● guaranteed to be unique

– each node knows which of its edges is in tree

– asynchronous wakeup (model as input action)
● also wake up when message is received

Minimum spanning tree

● Recall synchronous algorithm (SynchGHS)
– proceeds in phases

● maintain spanning forest (disconnected tree “fragments”)
– each fragment has a leader

● each fragment finds min weight outgoing edge (MWOE)
● merge fragments using MWOEs to get fragments for next phase

– determine new leader

– in phase 0
● each node initially in fragment by itself
● use its min weight edge as MWOE
● send “connect” across MWOE
● leader of new fragment is adjacent to MWOE of two fragments

– the one with the higher UID (don't really need UIDs though)

Minimum spanning tree

● Recall synchronous algorithm (SynchGHS)
– in each phase after phase 0:

● leader initiates search for MWOE (broadcast “initiate” via tree edges)
● each node finds its MWOE

– send “test” on potential edges, wait for “accept” or “reject”
– test edges one at a time in order of weight to minimize messages

● report results to leader (convergecast “report”)
– remember direction of best edge

● leader picks MWOE for fragment
– send “change-root” to get there, then “connect” across MWOE
– use remembered best edges

● leader is adjacent to edge that is MWOE of two fragments
● wait for phase to end

Minimum spanning tree

● Problems in translating to asynchronous setting
– safety

● determining outgoing edges (i.e., test-accept-reject protocol)
● concurrent overlapping searches/convergecasts
● merging fragments of different levels?

– liveness
● eventual termination?

– complexity
● O(log n) phases?

Minimum spanning tree

● Partially synchronize phases
– maintain “level” (phase number) at each node

– updated by initiate; sent with connect, test

– don't respond to “test” with higher level

– “absorb” lower level fragments trying to connect
● fragments “merge” only if they share MWOE

– skip reporting if too late (but propagate latest level)

● Rest is okay
– termination

– O(log n) phases

– O(|E| + n log n) msg complexity

Minimum spanning tree

F F'
mwoe(F)

mwoe(F')

Merge

F F'mwoe(F)

Absorb

level(F) = level(F')
level(F'') = level(F)+1

level(F) < level(F')
level(F'') = level(F')

F'' F''

F'' not really a new fragment:
same core and level as F'

Minimum spanning tree

● Some tricky issues
– might not search entire fragment

– might skip levels

– concurrent overlapping broadcasts of level
● FIFO channels avoid need for check

Minimum spanning tree

● Determining minimum-weight outgoing edge
– suppose fragment F has MWOE e to node n

– recall: don't reply to test if level(n) < level(F)

– if level(n) = level(F): just like synchronous GHS

– if level(n) > level(F) then accept
● fragment of n previously found outgoing edge e' lighter than e
● all other outgoing edges of F of weight > weight(e) > weight(e')
● so core of n's fragment at level(F) wasn't F's core

Minimum spanning tree

● Termination
– we never delay progress of lowest level fragments (LLFs)

● LLFs always eventually determine their MWOE
● LLFs always eventually send “connect”

– if MWOE of LLF is to higher level fragment
● absorb when “connect” is processed

– if MWOEs of all LLFs are to other LLFs
● must be two LLFs that share MWOEs (why?)
● so merge when “connect” is processed

Minimum spanning tree

● Complexity
– msg: O(|E| + n log n)

● 4|E| for test-reject msgs (one pair for each side of every edge)
● n initiate msgs per level (broadcast: only sent on tree edges)
● n report msgs per level (convergecast)
● 2n test-accept msgs per level (one pair for each node)
● n change-root/connect msgs per level (core to MWOE path)
● log n levels
● total: 4|E| + 5n log n

– time: O(n log n (l + d)) if wakeup together

Minimum spanning tree

● GHS paper included informal arguments
– convincing, but not formal

– many successful attempts to formalize, but all complicated
● lots of invariants because lots of variables, “subalgorithms”
● some use simulation relations
● recent proof by Moses and Shimony

Minimum spanning tree

● Optimizations
– initial wakeup protocol (to get time bound)

– don't test an edge that you rejected (in GHS)

– don't require report if edge weight is greater than best so far
● most likely for fragments being absorbed

Minimum spanning tree

● Applications
– leader election

● use variant of convergecast

● Optimal algorithms?
– msg complexity:

● Ω(|E|) if n unknown
● Ω(n log n) from leader election

– time complexity:
● trivial Ω(n); achieved by Awerbuch (1987)

