6.852 Lecture 10

• Minimum spanning tree

- Gallager-Humblet-Spira algorithm

• Reading: Chapter 15.5, Gallager-Humblet-Spira paper

Assume

- undirected graph (i.e., bidirectional communication)
- distinct edge weights
- size and diameter unknown
- can identify in- and out-edges to same neighbor
- Problem:
 - find minimum spanning tree
 - guaranteed to be unique
 - each node knows which of its edges is in tree
 - asynchronous wakeup (model as input action)
 - also wake up when message is received

- Recall synchronous algorithm (SynchGHS)
 - proceeds in phases
 - maintain spanning forest (disconnected tree "fragments")
 - each fragment has a leader
 - each fragment finds min weight outgoing edge (MWOE)
 - merge fragments using MWOEs to get fragments for next phase
 - determine new leader
 - in phase 0
 - each node initially in fragment by itself
 - use its min weight edge as MWOE
 - send "connect" across MWOE
 - leader of new fragment is adjacent to MWOE of two fragments
 - the one with the higher UID (don't really need UIDs though)

- Recall synchronous algorithm (SynchGHS)
 - in each phase after phase 0:
 - leader initiates search for MWOE (broadcast "initiate" via tree edges)
 - each node finds its MWOE
 - send "test" on potential edges, wait for "accept" or "reject"
 - test edges one at a time in order of weight to minimize messages
 - report results to leader (convergecast "report")
 - remember direction of best edge
 - leader picks MWOE for fragment
 - send "change-root" to get there, then "connect" across MWOE
 - use remembered best edges
 - leader is adjacent to edge that is MWOE of two fragments
 - wait for phase to end

- Problems in translating to asynchronous setting
 - safety
 - determining outgoing edges (i.e., test-accept-reject protocol)
 - concurrent overlapping searches/convergecasts
 - merging fragments of different levels?
 - -liveness
 - eventual termination?
 - complexity
 - O(log n) phases?

- Partially synchronize phases
 - maintain "level" (phase number) at each node
 - updated by initiate; sent with connect, test
 - don't respond to "test" with higher level
 - "absorb" lower level fragments trying to connect
 - fragments "merge" only if they share MWOE
 - skip reporting if too late (but propagate latest level)
- Rest is okay
 - termination
 - O(log n) phases
 - -O(|E| + n log n) msg complexity

- Some tricky issues
 - might not search entire fragment
 - might skip levels
 - concurrent overlapping broadcasts of level
 - FIFO channels avoid need for check

- Determining minimum-weight outgoing edge
 - suppose fragment F has MWOE e to node n
 - recall: don't reply to test if level(n) < level(F)</p>
 - if level(n) = level(F): just like synchronous GHS
 - if level(n) > level(F) then accept
 - fragment of n previously found outgoing edge e' lighter than e
 - all other outgoing edges of F of weight > weight(e) > weight(e')
 - so core of n's fragment at level(F) wasn't F's core

Termination

- we never delay progress of lowest level fragments (LLFs)
 - LLFs always eventually determine their MWOE
 - LLFs always eventually send "connect"
- if MWOE of LLF is to higher level fragment
 - absorb when "connect" is processed
- if MWOEs of all LLFs are to other LLFs
 - must be two LLFs that share MWOEs (why?)
 - so merge when "connect" is processed

- Complexity
 - msg: O(|E| + n log n)
 - 4|E| for test-reject msgs (one pair for each side of every edge)
 - n initiate msgs per level (broadcast: only sent on tree edges)
 - n report msgs per level (convergecast)
 - 2n test-accept msgs per level (one pair for each node)
 - n change-root/connect msgs per level (core to MWOE path)
 - log n levels
 - total: 4|E| + 5n log n
 - time: O(n log n (I + d)) if wakeup together

- GHS paper included informal arguments
 - convincing, but not formal
 - many successful attempts to formalize, but all complicated
 - lots of invariants because lots of variables, "subalgorithms"
 - some use simulation relations
 - recent proof by Moses and Shimony

Optimizations

- initial wakeup protocol (to get time bound)
- don't test an edge that you rejected (in GHS)
- don't require report if edge weight is greater than best so far
 - most likely for fragments being absorbed

- Applications
 - leader election
 - use variant of convergecast
- Optimal algorithms?
 - msg complexity:
 - $\Omega(|E|)$ if n unknown
 - $\Omega(n \log n)$ from leader election
 - time complexity:
 - trivial $\Omega(n)$; achieved by Awerbuch (1987)