

6.852: Distributed Algorithms

● Leader election in a synchronous ring
– lower bound for comparison-based algorithms
– non-comparison-based algorithms

● Algorithms in general synchronous networks
– leader election
– breadth-first search
– broadcast and convergecast
– shortest paths

● Reading: chap 3.6, 4.1-2
● Next: 4.3-4

Last lecture

● Leader election in a synchronous ring
– LeLann-Chang-Roberts algorithm

● pass UIDs in one direction, elect max
● proof: invariants
● time complexity: n (or 2n for halting, unknown size)
● msg complexity: O(n2)

– Hirschberg-Sinclair algorithm
● successive doubling (uses bidirectional channels)
● msg complexity: O(n log n)
● time complexity: O(n) (dominated by last phase)

– Non-comparison-based algorithms
● wait quietly until your “turn”, determined by UID
● msg complexity: O(n)
● time complexity: O(umin n), or O(n 2umin) if n unknown

Lower bounds for leader election

● Can we get lower time complexity?
– easy n/2 lower bound (informal)

● Can we get lower message complexity?
– Ω(n log n) message complexity

● Assumptions
– comparison-based algorithm
– unique start state (except for UID), deterministic

Comparison-based algorithms

● Depend only on relative order of UIDs
– identical start state, except for UID
– manipulate ids only by copying, sending, receiving,

and comparing (<, =, and >)
– can use results of comparisons to decide what to do

● what (if anything) to send to neighbors
● whether to elect self leader
● local state transition

Lower bound proof (overview)
● For any n, there is a ring of size n such that in

that ring, any leader election algorithm has:
– Ω(n) “active” rounds
– Ω(n/i) msgs sent in active round i (for i > √n)
– Thus, Ω(n log n) msgs total.

● For n = 2b, use “bit-reversal ring”
● Generalize for other n: c-symmetric rings
● Key lemma: Processes whose neighborhoods

“look the same” act the same (until information
from outside their neighborhoods reaches
them).
– need lots of active rounds to break symmetry

● a round is active if some (non-null) msg is sent
● k-neighborhood of a process:

the 2k+1 processes within distance k
● (u1, u2,..., uk) & (v1, v2,..., vk) order-equivalent if

– ui < uj iff vi ≤ vj
 for all i,j

● two process states s and t correspond with
respect to (u1, u2,..., uk) & (v1, v2,..., vk) if they
are identical except that occurences of ui in s
are replaced by vi in t for all i (& no other UIDs)
– analagous defn for corresponding messages

Lower bound proof

Lower bound proof

● Key lemma: Suppose A is a comparison-based
algorithm on a synchronous ring network with
processes i and j. If the sequences of UIDs in
their k-neighborhoods are order-equivalent then
at any point after at most k active rounds, i and
j are in corresponding states (with respect to
their k-neighborhoods' UID sequences).

● Proof: Induction on r = #completed rounds.
● Base: r = 0.

– Start states of i and j are identical except for UIDs.
– They correspond wrt k-nbhd for any k≥0.

Lower bound proof

● Inductive case:
– Assume true after round r-1, for all i,j,k.
– Prove true after round r, for all i,j,k.
– Fix i,j,k, where i and j have order-equiv k-nbhds.
– Assume i ≠ j and at most k of first r rounds are active.

● Trivial otherwise
– By IH: i and j in corresponding states wrt k-nbhds.
– Case analysis:

● If neither i nor j receives non-null msg, make corresponding
transition, so end up in corresponding states (wrt k-nbhds).

Lower bound proof

● Either i or j receives non-null msg in round r.
– round r is active: at most k-1 active of first r-1 rounds
– (k-1)-nbhds of i-1 and j-1 are order-equivalent
– By IH: after round r-1, processes i-1 and j-1 in

corresponding states wrt their (k-1)-nbhds (and thus
wrt k-nbhds of i and j).

– Thus, msg from i-1 to i and from j-1 to j correspond.
– Similarly for msgs from i+1 to i and from j+1 to j.
– So i and j are in corresponding states and receive

corresponding messages, so make corresponding
transition and end up in corresponding state.

Lower bound proof
● Corollary 1: Suppose A is a comparison-based

leader-election algorithm on a synchronous ring
network and k is an integer such that for any
process i, there is a distinct process j such that i
and j have order-equivalent k-neighborhoods.
Then A has more than k active rounds.

● Proof: By contradiction.
– Suppose A elects i in at most k active rounds.
– By assumption, there is a distinct process j with an

order-equivalent k-neighborhood.
– By previous lemma, i and j are in corresponding

states, so j is also elected—a contradiction.

Lower bound proof
● Corollary 2: Suppose A is a comparison-based

algorithm on a synchronous ring network, and k
and m are integers such that the k-neighborhood
of any process is order-equivalent to that of at
least m-1 other processes. Then at least m
messages are sent in A's kth active round.

● Proof: By defn, some process sends a message in A's
kth active round. By assumption, at least m-1 other
processes have order-equivalent k-neighborhoods. By
the lemma, immediately before this round, all these
processes are in corresponding states. Thus, they all
send messages in this round, so at least m messages
are sent.

Lower bound proof

● We want a ring with many order-equivalent
neighborhoods.

● For powers of 2: bit-reversal rings
– UID is bit-reversed process number
– for every segment of length n/2b, there are (at least)

2b order-equivalent segments (including original)
● for every process i, at least n/4k processes (including i) with

order-equivalent k-neighborhoods for k < n/4.
– more than n/8 active rounds
– #msgs ≥ n/4 + n/8 + n/12 + ... + 2 = Ω(n log n)

Lower bound proof

● c-symmetric ring: For every l such that √n < l <
n, and every sequence S of length l in the ring,
there are at least ⎣cn/l⎦ order-equivalent
occurrences.

● [Frederickson-Lynch] There exists c such that
for every positive integer n,
there is a c-symmetric ring of size n.

● Given c-symmetric ring, argue similarly to
before.

General synchronous networks

● Digraph G = (V,E) and set of messages M
– V = set of processes
– E = set of communication channels
– distance(i,j) = shortest distance from i to j
– diam = max distance(i,j) for all i,j
– assume: strongly connected (diam < ∞), UIDs

● For each process:
– states
– start: nonempty subset of states
– msgs: maps (state,out-nbr) to M⊥
– trans: maps (state,in-nbrs→M⊥) to states

Leader election in general network

● Simple “flooding” algorithm:
– Assume diameter is known (diam).
– Every round: Send max UID seen to all neighbors.
– Stop after diam rounds.
– Elect self iff own UID is max seen.

Leader election in general network
● states

– UID
– max-uid (initially UID)
– status (one of: unknown, leader, not-leader)
– round

● msgs
– if round < diam send send max-uid to all neighbors

● trans
– increment round
– max-uid := max (max-uid, UIDs received)
– if round = diam then

● status := leader if max-uid = UID, not-leader otherwise

Leader election in general network

1

5

4
3

2

6

1

2

5

3

6

4

Start configuration

Leader election in general network

1

5

4
3

2

6

1

2

5

3

6

4

2

1
3

5

6

6

4

21

2

5

Round 1 (msgs)

Leader election in general network

1

5

4
3

2

6

3

5

5

6

6

6

2

1
3

5

6

6

4

21

2

5

Round 1 (trans)

Leader election in general network

1

5

4
3

2

6

3

5

5

6

6

6

Round 2 (start)

Leader election in general network

1

5

4
3

2

6

3

5

5

6

6

6

5

3
6

5

6

6

6

53

5

5

Round 2 (msgs)

Leader election in general network

1

5

4
3

2

6

6

5

6

6

6

6

5

3
6

5

6

6

6

53

5

5

Round 2 (trans)

Leader election in general network

1

5

4
3

2

6

6

5

6

6

6

6

Round 3 (start)

Leader election in general network

1

5

4
3

2

6

6

5

6

6

6

6

5

6
6

6

6

6

6

56

5

6

Round 3 (msgs)

Leader election in general network

1

5

4
3

2

6

6

6

6

6

6

6

5

6
6

6

6

6

6

56

5

6

Round 3 (trans)

Leader election in general network

1

5

4
3

2

6

6

6

6

6

6

6

Round 4 (start)

Leader election in general network

1

5

4
3

2

6

6

6

6

6

6

6

6

6
6

6

6

6

6

66

6

6

Round 4 (msgs)

Leader election in general network

1

5

4
3

2

6

6

6

6

6

6

6

Round 4 (trans)

Leader election in general network

● Simple “flooding” algorithm:
– Assume diameter is known (diam).
– Every round: Send max UID seen to all neighbors.
– Stop after diam rounds.
– Elect self iff own UID is max seen.
– Time complexity: diam
– Msg complexity: diam |E|

● Proof?

Leader election in general network

● After round r:
– if distance(j,i) ≤ r then max-uidi ≥ UIDj

● Proof (by induction on r):
– Base: r = 0

● distance(j,i) = 0 implies j = i, and max-uidi = UIDi

– Inductive step: assume for r-1, prove for r

Leader election in general network

● Do we need to know diameter?
● Can we reduce time complexity?
● Can we reduce message complexity?

Leader election in general network

● Reducing message complexity
– don't send same UID twice
– new state var: new-info: Boolean, initially true
– only send max-uid if new-info = true
– new-info := (max UID received > max-uid)

Leader election in general network

1

5

4
3

2

6

1

2

5

3

6

4

Start configuration

Leader election in general network

1

5

4
3

2

6

1

2

5

3

6

4

2

1
3

5

6

6

4

21

2

5

Round 1 (msgs)

Leader election in general network

1

5

4
3

2

6

3

5

5

6

6

6

2

1
3

5

6

6

4

21

2

5

Round 1 (trans)

Leader election in general network

1

5

4
3

2

6

3

5

5

6

6

6

Round 2 (start)

Leader election in general network

1

5

4
3

2

6

3

5

5

6

6

6

5

3
6

6

53

Round 2 (msgs)

5

Leader election in general network

1

5

4
3

2

6

6

5

6

6

6

6

5

3
6

6

53

Round 2 (trans)

5

Leader election in general network

1

5

4
3

2

6

6

5

6

6

6

6

Round 3 (start)

Leader election in general network

1

5

4
3

2

6

6

5

6

6

6

6

6

6

6 6

Round 3 (msgs)

Leader election in general network

1

5

4
3

2

6

6

6

6

6

6

6

6

6

6 6

Round 3 (trans)

Leader election in general network

1

5

4
3

2

6

6

6

6

6

6

6

Round 4 (start)

Leader election in general network

1

5

4
3

2

6

6

6

6

6

6

6

6

6

6

Round 4 (msgs)

Leader election in general network

1

5

4
3

2

6

6

6

6

6

6

6

Round 4 (trans)

Leader election in general network

● Reducing message complexity
– don't send same UID twice
– new state var: new-info: Boolean, initially true
– only send max-uid if new-info = true
– new-info := (max UID received > max-uid)

● Proof
– repeat previous proof
– simulation

Simulation relation

● “Run two algorithms side by side”
● Define simulation relation between states

– satisfied by start states
– preserved by every transition
– outputs should be the same in related states

Simulation relation

● All state variables in original are the same in
both algorithms

● Base case: by definition
● Inductive step
● Invariant:

– If i is in-nbr of j and maxuidi > maxuidj then
newi = true

– prove by induction

What's with the proofs?

Next week

● Breadth-first search
● Shortest paths
● Spanning trees

Non-comparison-based algorithms
● Can we reduce msg complexity if we aren't

constrained to comparison-based algorithms?
● Consider the case where:

– n is known
– UIDs are positive integers

● Algorithm:
– Phase 1, 2, 3,....; n rounds each
– Phase k exclusively dedicated to UID k

● Process with UID k sends it on first round of phase k then
become leader and halt (elects min)

● Other processes pass it on, then halt (not leader).
– Msg complexity: n
– Time complexity: umin n

Non-comparison-based algorithms

● What if we don't know n?
● VariableSpeeds algorithm in book

– UID k moves one hop every 2k rounds
– propagate only smallest seen so far
– msg complexity: O(n)
– time complexity: O(n 2umin)

● What if we know more?

Leader election in general network

?
?

??

?

?

?

?

?

