6.852: Distributed Algorithms

- Leader election in a synchronous ring
 - lower bound for comparison-based algorithms
 - non-comparison-based algorithms
- Algorithms in general synchronous networks
 - leader election
 - breadth-first search
 - broadcast and convergecast
 - shortest paths
- Reading: chap 3.6, 4.1-2
- Next: 4.3-4

Last lecture

- Leader election in a synchronous ring
 - LeLann-Chang-Roberts algorithm
 - pass UIDs in one direction, elect max
 - proof: invariants
 - time complexity: n (or 2n for halting, unknown size)
 - msg complexity: O(n²)
 - Hirschberg-Sinclair algorithm
 - successive doubling (uses bidirectional channels)
 - msg complexity: O(n log n)
 - time complexity: O(n) (dominated by last phase)
 - Non-comparison-based algorithms
 - wait quietly until your "turn", determined by UID
 - msg complexity: O(n)
 - time complexity: O(u_{min} n), or O(n 2^{u_{min}}) if n unknown

Lower bounds for leader election

- Can we get lower time complexity?
 - easy n/2 lower bound (informal)
- Can we get lower message complexity?
 - Ω (n log n) message complexity
- Assumptions
 - comparison-based algorithm
 - unique start state (except for UID), deterministic

Comparison-based algorithms

- Depend only on relative order of UIDs
 - identical start state, except for UID
 - manipulate ids only by copying, sending, receiving, and comparing (<, =, and >)
 - can use results of comparisons to decide what to do
 - what (if anything) to send to neighbors
 - whether to elect self leader
 - local state transition

Lower bound proof (overview)

- For any n, there is a ring of size n such that in that ring, any leader election algorithm has:
 - $\Omega(n)$ "active" rounds
 - Ω (n/i) msgs sent in active round i (for i > \sqrt{n})
 - Thus, Ω (n log n) msgs total.
- For n = 2b, use "bit-reversal ring"
- Generalize for other n: c-symmetric rings
- Key lemma: Processes whose neighborhoods "look the same" act the same (until information from outside their neighborhoods reaches them).
 - need lots of active rounds to break symmetry

- a round is active if some (non-null) msg is sent
- k-neighborhood of a process: the 2k+1 processes within distance k
- (u₁, u₂,..., u_k) & (v₁, v₂,..., v_k) order-equivalent if
 u_i < u_i iff v_i ≤ v_i for all i,j
- two process states s and t correspond with respect to (u₁, u₂,..., u_k) & (v₁, v₂,..., v_k) if they are identical except that occurences of u_i in s are replaced by v_i in t for all i (& no other UIDs)
 - analagous defn for corresponding messages

- Key lemma: Suppose A is a comparison-based algorithm on a synchronous ring network with processes i and j. If the sequences of UIDs in their k-neighborhoods are order-equivalent then at any point after at most k active rounds, i and j are in corresponding states (with respect to their k-neighborhoods' UID sequences).
- Proof: Induction on r = #completed rounds.
- Base: r = 0.
 - Start states of i and j are identical except for UIDs.
 - They correspond wrt k-nbhd for any k≥0.

Inductive case:

- Assume true after round r-1, for all i,j,k.
- Prove true after round r, for all i,j,k.
- Fix i,j,k, where i and j have order-equiv k-nbhds.
- Assume i ≠ j and at most k of first r rounds are active.
 - Trivial otherwise
- By IH: i and j in corresponding states wrt k-nbhds.
- Case analysis:
 - If neither i nor j receives non-null msg, make corresponding transition, so end up in corresponding states (wrt k-nbhds).

- Either i or j receives non-null msg in round r.
 - round r is active: at most k-1 active of first r-1 rounds
 - (k-1)-nbhds of i-1 and j-1 are order-equivalent
 - By IH: after round r-1, processes i-1 and j-1 in corresponding states wrt their (k-1)-nbhds (and thus wrt k-nbhds of i and j).
 - Thus, msg from i-1 to i and from j-1 to j correspond.
 - Similarly for msgs from i+1 to i and from j+1 to j.
 - So i and j are in corresponding states and receive corresponding messages, so make corresponding transition and end up in corresponding state.

- Corollary 1: Suppose A is a comparison-based leader-election algorithm on a synchronous ring network and k is an integer such that for any process i, there is a distinct process j such that i and j have order-equivalent k-neighborhoods. Then A has more than k active rounds.
- Proof: By contradiction.
 - Suppose A elects i in at most k active rounds.
 - By assumption, there is a distinct process j with an order-equivalent k-neighborhood.
 - By previous lemma, i and j are in corresponding states, so j is also elected—a contradiction.

- Corollary 2: Suppose A is a comparison-based algorithm on a synchronous ring network, and k and m are integers such that the k-neighborhood of any process is order-equivalent to that of at least m-1 other processes. Then at least m messages are sent in A's kth active round.
- Proof: By defn, some process sends a message in A's kth active round. By assumption, at least m-1 other processes have order-equivalent k-neighborhoods. By the lemma, immediately before this round, all these processes are in corresponding states. Thus, they all send messages in this round, so at least m messages are sent.

- We want a ring with many order-equivalent neighborhoods.
- For powers of 2: bit-reversal rings
 - UID is bit-reversed process number
 - for every segment of length n/2^b, there are (at least)
 2^b order-equivalent segments (including original)
 - for every process i, at least n/4k processes (including i) with order-equivalent k-neighborhoods for k < n/4.
 - more than n/8 active rounds
 - #msgs ≥ n/4 + n/8 + n/12 + ... + 2 = Ω (n log n)

- c-symmetric ring: For every I such that √n < I < n, and every sequence S of length I in the ring, there are at least [cn/I] order-equivalent occurrences.
- [Frederickson-Lynch] There exists c such that for every positive integer n, there is a c-symmetric ring of size n.
- Given c-symmetric ring, argue similarly to before.

General synchronous networks

- Digraph G = (V,E) and set of messages M
 - V = set of processes
 - E = set of communication channels
 - distance(i,j) = shortest distance from i to j
 - diam = max distance(i,j) for all i,j
 - assume: strongly connected (diam < ∞), UIDs
- For each process:
 - states
 - start: nonempty subset of states
 - msgs: maps (state,out-nbr) to M_{\perp}
 - trans: maps (state,in-nbrs→M_⊥) to states

- Simple "flooding" algorithm:
 - Assume diameter is known (diam).
 - Every round: Send max UID seen to all neighbors.
 - Stop after diam rounds.
 - Elect self iff own UID is max seen.

states

- UID
- max-uid (initially UID)
- status (one of: unknown, leader, not-leader)
- round

msgs

- if round < diam send send max-uid to all neighbors
- trans
 - increment round
 - max-uid := max (max-uid, UIDs received)
 - if round = diam then
 - status := leader if max-uid = UID, not-leader otherwise

- Simple "flooding" algorithm:
 - Assume diameter is known (diam).
 - Every round: Send max UID seen to all neighbors.
 - Stop after diam rounds.
 - Elect self iff own UID is max seen.
 - Time complexity: diam
 - Msg complexity: diam |E|
- Proof?

- After round r:
 - if distance(j,i) ≤ r then max-uid_i ≥ UID_i
- Proof (by induction on r):
 - Base: r = 0
 - distance(j,i) = 0 implies j = i, and max-uid_i = UID_i
 - Inductive step: assume for r-1, prove for r

- Do we need to know diameter?
- Can we reduce time complexity?
- Can we reduce message complexity?

- Reducing message complexity
 - don't send same UID twice
 - new state var: new-info: Boolean, initially true
 - only send max-uid if new-info = true
 - new-info := (max UID received > max-uid)

- Reducing message complexity
 - don't send same UID twice
 - new state var: new-info: Boolean, initially true
 - only send max-uid if new-info = true
 - new-info := (max UID received > max-uid)
- Proof
 - repeat previous proof
 - simulation

Simulation relation

- "Run two algorithms side by side"
- Define simulation relation between states
 - satisfied by start states
 - preserved by every transition
 - outputs should be the same in related states

Simulation relation

- All state variables in original are the same in both algorithms
- Base case: by definition
- Inductive step
- Invariant:
 - If i is in-nbr of j and maxuid_i > maxuid_j then new_i = true
 - prove by induction

What's with the proofs?

Next week

- Breadth-first search
- Shortest paths
- Spanning trees

Non-comparison-based algorithms

- Can we reduce msg complexity if we aren't constrained to comparison-based algorithms?
- Consider the case where:
 - n is known
 - UIDs are positive integers
- Algorithm:
 - Phase 1, 2, 3,....; n rounds each
 - Phase k exclusively dedicated to UID k
 - Process with UID k sends it on first round of phase k then become leader and halt (elects min)
 - Other processes pass it on, then halt (not leader).
 - Msg complexity: n
 - Time complexity: u_{min} n

Non-comparison-based algorithms

- What if we don't know n?
- VariableSpeeds algorithm in book
 - UID k moves one hop every 2^k rounds
 - propagate only smallest seen so far
 - msg complexity: O(n)
 - time complexity: O(n 2^{umin})
- What if we know more?

