
Sequential Consistency versus Linearizability

FIAGIT ATTIYA

The Technion

and

JENNIFER L. WELCH

University of North Carolina at Chapel Hill

The power of two well-known consistency conditions for shared-memory multiprocessors, sequen-

tial consistency and lineariza bility, is compared. The cost measure studied is the worst-case

response time in distributed implementations of virtual shared memory supporting one of the

two conditions. Three types of shared-memory objects are considered: read/write objects, FIFO

queues, and stacks. If clocks are only approximately synchronized (or do not exist), then for all

three object types it is shown that linearizability is more expensive than sequential consistency:

We present upper bounds for sequential consistency and larger lower bounds for linearizability.

We show that, for all three data types, the worst-case response time is very sensitive to the

assumptions that are made about the timing information available to the system. Under the

strong assumption that processes have perfectly synchronized clocks, it is shown that sequential

consistency and linearizability are equally costly: We present upper bounds for linearizability

and matching lower bounds for sequential consistency. The upper bounds are shown by present-

ing algorithms that use atomic broadcast in a modular fashion. The lower-bound proofs for the

approximate case use the technique of “shifting,” first introduced for studying the clock synchro-
nization problem.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—cache memo-

rzes; shared memory; C. 1.2 [Processor Architectures]: Multiple Data Stream Architectures—

This paper combines and unifies results that appear in preliminary form in Attiya and Welch

1991 and Attiya 1991. H. Attiya’s research was supported in part by the B. and G. Greenberg

Research Fund (Ottawa), by Technion V.P.R. funds, and by the fund for the promotion of

research at the Technion. J. L. Welch’s research was supported in part by NSF grant CCR-

9010730, an IBM Faculty Development Award, and an NSF Presidential Young Investigator

Award. Part of the work by Attiya was performed while visiting the DEC Cambridge Research

Laboratory and the Laboratory for Computer Science, MIT, supported by ONR contract NOOO14-

85-K-0168, by NSF grants CCR-8611442 and CCR-8915206, and by DARPA contracts NOOO14-

89-J-1988 and NOO014-87-K-0825.

Authors’ addresses: H. Attiya, Department of Computer Science, The Technion, Haifa 32000,

Israel; J. L. Welch, Department of Computer Science, Texas A & M University, College Station,

TX 77843-3112.

This paper was originally submitted to ACM TOPLAS, where it was reviewed and accepted for

publication. It was subsequently transferred to TOCS, with the agreement of the authors, to take

advantage of the shorter delay to publication for TOCS.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

01994 ACM 0164-0925/94/0500-0091 $03.50

ACM Transactions on Computer Systems, Vol 12, No 2, May 1994, Pages 91-122.

92 . H, Attiya and J. L. Welch

parallel processors; D.3.3 [Programming Techniques]: Language Constructs—abstract data

types; concurrent programming structures; D.4 2 [Operating Systems]: Storage Man-

agement—distnbuted memorzes; F.1.2 [Computation by Abstract Devices]: Modes of Com-

putatlon—parallelum and concurrency

General Terms: Algorithms, Design

Additional Key Words and Phrases: Cache coherence, hnearizabdity, sequential consmtency.

shared memory

1. INTRODUCTION

1.1 Overview

We present a quantitative comparison of the inherent costs of two well-known

consistency conditions for concurrently accessed shared data: sequential con-

sistency and linearizability. Our main conclusion is that under realistic

timing assumptions it is strictly more expensive to provide linearizability

than sequential consistency in distributed (message-passing) implementa-

tions, where the cost measure is the worst-case time for a data access.

Because their definitions are very similar, linearizability and sequential

consistency are often confused, but our work shows that there can be a

considerable cost to such confusion. For example, Dubois and Scheurich

[1990; Scheurich and Dubois 1987] define a sufficient condition for sequential

consistency (cf. Dubois and Scheurich [1990, clef. 6.3]); however, this condition

implies linearizability.1 Implementing linearizability imposes more cost than

is necessary to support the target condition of sequential consistency. To our

knowledge, this is the first time sequential consistency is shown to be more

costly than linearizability.

We also study the worst-case access time for the two conditions under more

stringent timing assumptions, namely, when processes have perfectly syn-

chronized clocks. We show several lower bounds for sequential consistency in

this model; these lower bounds carry over to more realistic models in which

weaker assumptions hold about the clock behavior. We also present matching

“counterexample” algorithms for linearizability in this model. They demon-

strate that no improved lower bounds for either condition are possible with-

out weakening the timing assumptions. The fact that sequential consistency

and linearizability are equally costly in this model (for our measure) is

somewhat surprising. It indicates the importance of exphcitly and carefully

specifying system timing assumptions, and the nontriviality of separating
sequential consistency from linearizability.

1.2 Detailed Description

Managing concurrent accesses to shared data by several processes is a

problem that arises in many contexts, ranging from cache coherence for

] Techmcally, the definition of Dubois and Scheurich [1990] rehes on the notion of “performing an

operation,” which can only be interpreted in a specdic architectural model Under a natural

interpretation (e.g , as m Gibbons et al. 1991), the definition implies linearizability

ACM TransactIons on Computer Systems, Vol 12, No, 2. May 1994

Sequential Consistency versus Linearizability . 93

multiprocessors to distributed file systems and transaction systems. A consis-

tency condition must specify what guarantees are provided about the values

returned by data accesses in the presence of interleaved and/or overlapping

accesses, perhaps to distinct copies of a single logical data item. Two conflict-

ing goals of a consistency condition are to be strong enough to be useful to the

user and weak enough to be implemented efficiently. Sequential consistency

and linearizability are two well-known consistency conditions.

Sequential consistency requires that all of the data operations appear to

have executed atomically, in some sequential order that is consistent with the

order seen at individual processes.z When this order must also preserve the

global (external) ordering of nonoverlapping operations, this consistency

guarantee is called linearizability [Herlihy and Wing 1990].3

Clearly, linearizability is stronger than sequential consistency. As dis-

cussed in Herlihy and Wing [1990], linearizability has two advantages over

sequential consistency. First, it is somewhat more convenient to use, espe-

cially for formal verification, because it preserves real-time ordering of opera-

tions, and hence corresponds more naturally to the intuitive notion of atomic

execution of operations. Second, linearizability is compositional (or local); that

is, the combination of separate linearizable implementations of two objects

yields a linearizable implementation.4 In contrast, sequential consistency is

not compositional, implying that all objects must be implemented together.

Consequently, development costs and the amount of synchronization needed

increase, and it is harder to apply separate optimizations to different objects.

Several papers have proposed sequentially consistent implementations of

read/write objects, which were claimed to achieve a high degree of concur-

rency (e.g., Adve and Hill [1990a], Afek et al. [1993], Bennett et al. [1990],

Brantley et al. [1985], Dubois and Scheurich [1990], Min and Baer [1989],

and Scheurich and Dubois [1987]). None of these papers proves that similar

improvements cannot be achieved for linearizability, and none provides an

analysis of the response time of the implementations suggested (or any other

complexity measure).

In contrast, our work shows the existence of a gap between the fastest

implementation of linearizability and what can be achieved for sequential

consistency. To our knowledge, this is the first such quantitative result

comparing the two conditions. Our results are shown in relatively abstract

formal models. We believe that the correct abstraction has been done so that

the results are applicable in a wide variety of contexts.

Our system model consists of a collection of application processes running

concurrently and communicating via virtual shared memory. The shared

zThis condition is similar to serializabdity from database theory [Bernstein et al. 1987; Pa-

padimitriou 1986]; however, serializability applies to transactions that aggregate many opera-

tions.

3AIs0 called afomicity [Herlihy 1988; Lamport 1986; Misra 1986] in the case of read/write

objects.

4We use the term imptementatton in its usual meaning in the semantics literature, of satisfying

a certain specification.

ACM Transactions on Computer Systems, Vol. 12, No. 2, May 1994.

94 . H. Attiya and J, L Welch

memory consists of a collection of objects. Unlike most previous research, we

consider other types of shared objects in addition to the usual read/write

objects. Since read/write objects do not provide an expressive and a conve-

nient abstraction for concurrent programming (cf. Herlihy [1988]), many

multiprocessors now support more powerful concurrent objects, for example,

FIFO queues, stacks, Test & Set, and Fetch & Add [Brantley et al. 1985;

Gottlieb

et al. 1983]. We study FIFO queues and stacks; our results easily extend to

Test & Set and Fetch& Add.

The application processes are running in a distributed system consisting of

a collection of nodes and a communication network. The network need not be

fully connected physically, but it must be possible for every node to communi-

cate with every other node. The shared-memory abstraction is implemented

by a memory-consistency system (MCS), which uses local memory at the

various nodes and some protocol executed by the MCS processes (one at each

node). (Nodes that are dedicated storage can be modeled by nullifying the

application process.) Figure 1 illustrates a node, on which an application

process and an MCS process are running. The application process sends calls

to access shared data to the MCS process; the MCS process returns the

responses to the application process, possibly based on messages exchanged

with MCS processes on other nodes. The responses must be consistent with

the particular consistency condition that is being implemented. Thus, the

consistency condition is defined at the interface between the application

process and the MCS.

On each node there is a real-time clock readable by the MCS pr cess at

that node, which runs at the same rate as real time. Every message incurs a

delay in the interval [d – ZL, d], for some known constants u and d, O s u < d

(u stands for uncertainty). If u = O, then the message delays are constant.

Thus, d is the worst-case delay in the network over all pairs of processes, and

u is the worst-case uncertainty. Our lower bounds are given in terms of d and

u. Our upper bounds are given in terms of d (u happens not to enter in);

however, all of our algorithms also work in asynchronous systems where d

and u are unknown (or even unbounded), since these constants appear

nowhere in the code.

We have chosen to focus on the distinction between performing a data

operation locally at a process, based on its local state, and performing an

operation that requires communication between processes before it can re-

turn to the user. We model this by assuming O time for local processing and
d >0 time for the worst-case communication cost in the system. This is a
reasonable approximation, as in many systems the time required for commu-

nication far outweighs the time for local computation.

We start with the case when the process clocks are only approximately

synchronized and there is uncertainty in the message delay.5 Under this

assumption, for all three object types, there are gaps between the upper

bounds for sequentially consistent implementations and the lower bounds for

‘If there is no uncertainty In the message delay, then clocks can be perfectly synchronized.

ACM TransactIons on Computer Systems. Vol 12, No 2, May 1994.

Sequential Consistency versus Linearizability . 95

node

application

process

Call
B

Response
I

MCS process

send message
b

receive message

network

, ,

Fig. 1. System architecture.

Iinearizable implementations. We show that there are operations that can be

done instantaneously (i.e., locally) in sequentially consistent implementa-

tions, but that require 0(u) time in linearizable implementations (note that

u can be as large as d). In particular,

—for read/write objects,

—for linearizability, the worst-case time for a read is at least u/4;

—for Iinearizability, the worst-case time for a write is at least u/2; and

—for sequential consistency, there is an algorithm that guarantees time O

for a read and time 2 d for a write, and another that guarantees the

reverse;

—for FIFO queues,

—for Iinearizability, the worst-case time for an enqueue is at least u/2;

and

—for sequential consistency, there is an algorithm that guarantees time O

for an enqueue and time 2 d for a dequeue;

—the situation for stacks is analogous to that for FIFO queues, with “pop”

playing the role of “dequeue” and “push” the role of “enqueue.”

Thus, under these timing assumptions, linearizability is more expensive to

implement than sequential consistency, when there are significantly more

operations of one type.

We then consider the stronger model when processes’ clocks are perfectly

synchronized. In this case, we show several strong lower bounds for sequen-

tial consistency. We also give matching upper bounds for linearizability. In

particular,

—for read/write objects,

—for sequential consistency, the sum of the worst-case response times for

a read operation and a write operation is at least d; and

ACM Transactions on Computer Systems, Vol 12, No. 2, May 1994.

96 . H, Attiya and J. L. Welch

-for linearizability, there is an algorithm in which a read operation is

performed instantaneously (locally), while a write operation returns

within time d; also, there is an algorithm in which the roles are

reversed.

The above lower bound formalizes and strengthens a result of Lipton and

Sandberg [1988]. The two matching algorithms show that the lower-bound

trade-off is tight: It is possible to have the response time of only one of the

operations depend on the network’s latency.

—for FIFO queues,

—for sequential consistency, the worst-case response time for a dequeue

operation is at least d; and

—for linearizability, there is an algorithm in which an enqueue operation

returns instantaneously, while a dequeue operation returns within

time d;

—for stacks, as in the case of imperfect clocks, the results are analogous to

those for FIFO queues, with “pop” playing the role of “dequeue” and “push”

the role of “enqueue.”

Thus, we need to assume that clocks are imperfect in order to separate

sequential consistency from Iinearizability, indicating that this separation is

not as obvious as it may seem and depends on delicate timing assumptions.

Section 2 presents our definitions and reviews a technique called “shifting”

that is used in our lower bounds. Section 3 covers the imperfect-clock case.

There is a subsection for each object type; each subsection consists of the

lower bound(s) for Iinearizability, followed by the upper bound(s) for sequen-

tial consistency. Section 4 considers the perfect-clock case. Again, there is one

subsection for each of the three object types; each subsection consists of the

lower bound(s) for sequential consistency followed by the upper bound(s) for

linearizability. We conclude in Section 5 with a discussion of our results,

describe work that followed the original version of this paper, and suggest

avenues for further research.

2. PRELIMINARIES

2.1 Objects

Every shared object is assumed to have a serial specification (cf., Herlihy and
Wing [1990]) defining a set of operations, which are ordered pairs of call and

response events, and a set of operation sequences, which are the allowable

sequences of operations on that object. A sequence r of operations for a

collection of objects is legal if, for each object O, the restriction of r to

operations of O, denoted ~ 10, is in the serial specification of O.

In the case of a read/write object X, the ordered pair of events

[ReadP(X), RetP(X, u)] forms a Read operation for any process p and value u,

and [WriteP(X, u), AckP(X)] forms a Write operation. The set of operation

sequences consists of all sequences in which every read operation returns the

ACM Transactions on Computer Systems, VOI 12, No 2, May 1994

Sequential Consistency versus Linearizability . 97

value of the latest preceding write operation (the usual read/write seman-

tics).G

In the case of a FIFO queue Q, the ordered pair of events [DeqP(Q),

RetP(Q, u)] forms a Deq operation for any process p and value u, and

[Enqp(Q, o), Ackp(Q)l forms an Enq operation. The set of operation sequences
consists of all sequences that obey the usual FIFO queue semantics. That is,

with a sequence of operations we associate a sequence of queue states,

starting with an initial empty state and continuing with a state for each

operation representing the state of the queue after the operation. Each

enqueue operation adds an item to the end of the queue, and each dequeue

operation removes an item from the head of the queue, or returns L if the

queue is empty.

The specification of a stack S is similar to the specification of a queue:

[PoP.(S), Ret .(S, u)] forms a POP operation for any process P and value U,. .
and ‘[PushP(~, u), AckP(S)] form-s a Push operation. The set of operation

sequences consists of all sequences that obey the usual

semantics.

last-in-first-out stack

2.2 System Model

We assume a system consisting of a collection of nodes connected via a

communication network. On each node there is an application process, an

MCS process, and a real-time clock readable by the MCS process at that node.

Formally, a clock is a monotonically increasing function from ~ (real time)

to J%’(clock time).7 The clock cannot be modified by the process. Processes do

not have access to the real time; each process obtains its only information

about time from its clock.

Below we list and informally explain the euents that can occur at the MCS

process on node p. (The name p is also used for the MCS process on node p.)

Call events. The application process on node p wants to access a shared

object.

Response events. The MCS process on node p is providing a response from

a shared object to the application process on node p.

Message receive events. receive(p, m, q) for all messages m and nodes q:

The MCS process on node p receives message m from the MCS process on

node q.

Message send events. send(p, m, q) for all messages m and MCS pro-

cesses q: The MCS process on node p sends message m to the MCS process

on node q.

Timer-set events. timerset(p, T) for all clock times T: p sets a timer to go

off when its clock reads T.

‘The specifications used in this paper are operational. It is possible to give algebraic (axiomatic)

specifications (cf. [Herlihy and Wing 1990]); operational specifications are used here for simplic-

ity.

7@ denotes the real numbers.

ACM Transactions on Computer Systems, Vol. 12, No 2, May 1994.

98 . H. Attiya and J L, Welch

Timer events. timer(p, T) for all clock times T: A timer that was set for

time T on p‘s clock goes off.

The call, message-receive, and timer events are interrupt events.

An MCS process (or simply process) is an automaton with a (possibly

infinite) set of states, including an initial state, and a transition function.

Each interrupt event causes an application of the transition function. The

transition function is a function from states, clock times, and interrupt events

to states, sets of response events, sets of message-send events, and sets of

timer-set events (for subsequent clock times). That is, the transition function

takes as input the current state, clock time, and interrupt event (which is the

receipt of a call from the application process, the receipt of a message from

another node, or a timer going off), and produces a new state, a set of

response events for the application process, a set of messages to be sent and a

set of timers to be set for the future.

A step of p is a tuple (s, T, i, s’, R, M, S) where s and s’ are states, T is a

clock time, i is an interrupt event, R is a set of response events, M is a set of

message-send events, S is a set of timer-set events, and s’, R, M, and S are

the result of p‘s transition function acting on s, T, and i.

A history of a process p with clock C is a mapping from ~ (real time) to

finite sequences of steps such that

(1) for each real time t, there is only a finite number of times t’ < t such that

the corresponding sequence of steps is nonempty (thus, the concatenation

of all the sequences in real-time order is a sequence);

(2) the old state in the first step is p’s initial state;

(3) the old state of each subsequent step is the new state of the previous step;

(4) for each real time t, the clock time component of every step in the

corresponding sequence is equal to C’(t); and

(5) for each real time t, in the corresponding sequence all nontimer events

are ordered before any timer event, and there is at most one timer event.

A memory-consistency system (MCS) is a set of processes P together with a

set of clocks %, one for each p in P. An execution of an MCS is a set of

histories, one for each process p in P with clock CP in %, satisfying the

following two conditions: (1) There is a one-to-one correspondence between

the messages sent by p to q and the messages received by q from p, for any

processes p and q. We use the message correspondence to define the delay of

any message in an execution to be the real time of receipt minus the real time
of sending. (2) A timer is received by p at clock time T iff p has previously

set a timer for T. (The network is not explicitly modeled, although the

constraints on executions given below imply that the network reliably deliv-

ers all messages sent.)

Execution CTis admissible if the foIlowing conditions hold:

(1) For every p and q, every message in w from p to q has its delay in the
range [d – u, d], for fixed nonnegative integers d and u, u < d. (This is a

restriction on the network.)

ACM TransactIons on Computer Systems, Vol 12, No, 2, May 1994

Sequential Consistency versus Linearizability . 99

(2) For every p, at most one call at p is pending at a time. (This is a
restriction on the application process.)

Note that the last condition allows each application process to have at most

one call outstanding at any time. This outlaws pipelining or prefetching.

2.3 Correctness Conditions

Given an execution u, let ops(u) be the sequence of call and response events

appearing in o in real-time order, breaking ties for each real time t as

follows: First, order all response events for time t whose matching call events

occur before time t,using process IDs to break any remaining ties. Then

order all operations whose call and response both occur at time t.Preserve

the relative ordering of operations for each process, and break any remaining

ties with process IDs. Finally, order all call events for time t whose matching

response events occur after time t,using process IDs to break any remaining

ties.

Our formal definitions of sequential consistency and linearizability follow.

These definitions imply that every call gets an eventual response and that

calls and responses alternate at each process. Given a sequence s of opera-

tions and a process p, we denote by s Ip the restriction of s to operations of p.

Definition 2.1 (Sequential consistency). An execution ~ is sequentially

consistent if there exists a legal sequence r of operations such that r is a

permutation of ops(u) and, for each process p, ops(a)l p is equal to r Ip.

Definition 2.2 (Linearizability). An execution u is linearizable if there

exists a legal sequence ~ of operations such that ~ is a permutation of
OPS(u), for each process p, ops(a)1p is equal to ~ Ip, and furthermore,

whenever the response for operation op ~ precedes the call for operation op ~

in ops(v), then op ~ precedes Opz in ~.

An MCS is a sequentially consistent implementation of a set of objects if

any admissible execution of the MCS is sequentially consistent; similarly, an

MCS is a linearizable implementation of a set of objects if any admissible

execution of the MCS is linearizable.

We measure the efficiency of an implementation by the worst-case response

time for any operation on any object in the set. Given a particular MCS, an

object O implemented by it, and an operation P on O, we denote by IP(0) I

the maximum time taken by a P operation on O in any admissible execution.

We denote by IP I the maximum of IP(0) I over all objects O implemented by

the MCS.

2.4 Shifting

A basic technique we use in our lower-bound proofs (in Section 3.1.1 and
3.2. 1) is shifting, originally introduced in Lundelius and Lynch [1984] to

prove lower bounds on the precision achieved by clock synchronization

ACM Transactions on Computer Systems, Vol. 12, No. 2, May 1994.

100 . H. Attiya and J. L, Welch

algorithms. Shifting is used to change the timing and the ordering of events

in the system, while preserving the local views of the processes.

Informally, given an execution with a certain set of clocks, if process p’s

history is changed so that the real times at which the events occur are shifted

by some amount s and if p’s clock is shifted by the same amount, then the

result is another execution in which every process still “sees” the same events

happening at the same clock times. The intuition is that the changes in the

real times at which events happen at p cannot be detected by p because its

clock has changed by a corresponding amount.

More precisely, the view of process p in history w of p with clock C is the

concatenation of the sequences of steps in n-, in real-time order, The real

times of occurrence are not represented in the view. Two histories, one of

process p with clock C and the other of process p with clock C“, are

equivalent if the view of p is the same in both histories. Two executions,

execution o of system (P, %) and execution v’ of (P, %-’), are equivalent if,

for each process p, the component histories for p in a and a‘ are equivalent.

Thus, the executions are indistinguishable to the processes. Only an outside

observer who has access to the real time can tell them apart.

Given history rr of process p with clock C, and real number s, a new

history n-’ = shift(n, s) is defined by m-’(t) = w(t + s) for all t.That is, all

tuples are shifted earlier in n-’ by s if s is positive, and later by Is I if s is

negative. Given a clock C and real number s, a new clock C’ = shift (C, s) is

defined by C’(t) = C(t’) + s for all t.That is, the clock is shifted forward by s

if s is positive, and backward by Is I if s is negative.

The following lemma observes that shifting a history of process p and p‘s

clock by the same amount produces another history:

~13iWMA 2.1. Let m- be a history of process p with clock C, and let s be a real

number. Then shift(n, s) is a history ofp with clock shift(C, s).

Given execution u of system (P, $3’) and real number s, a new execution

0’ = shift (v, p, s) is defined by replacing w, p’s history in v, by shift(rr, s),

and by retaining the same correspondence between sends and receives of

messages. (Technically, the correspondence is redefined so that a pairing in a

that involves the event for p at time t,in CT’, involves the event for p at time

t – s.) All tuples for process p are shifted by s, but no others are altered.

Given a set of clocks & = {C~: q G P}, and real number s, a new set of clocks

%’ = shift (%’, p, s) is defined by replacing clock Cp by clock shift(CP, s).

Process p‘s clock is shifted forward by s, but no other clocks are altered.

The following lemma observes that shifting one process’s history and clock

by the same amount in an execution results in another execution that is

equivalent to the original:

LEMMA 2.2 [Lundelius and Lynch 1984]. Let o- be an execution of system

(P, 8’), p a process, and s a real number. Let F’ = shift(i?, p, s) and o-’ =

shift(O, p, s). Then V’ is an execution of (P, g“), and V’ is equivalent to O.

ACM TransactIons on Computer Systems, Vol 12, No 2. May 1994.

Sequential Consistency versus Linearizability . 101

The following lemma quantifies how message delays change when an

execution is shifted. Notice that the result of shifting an admissible execution

is not necessarily admissible:

LEMMA 2.3 [Lundelius and Lynch 1984]. Let u be an execution of system

(P, 8’), p a process, and s a real number. Let %“ = shift(%, p, s) and V’ =

shift(u, p, s). Make the obvious correspondence between messages in v and in

w’. Suppose x is the delay of message m from process q to process r in v. Then

thedelayofminw’ isxifq+ pandr+p, x–sifr= p,andx+sifq=p.

3. IMPERFECT CLOCKS

We start by assuming a system in which clocks run at the same rate as real

time but are not initially synchronized, and in which message delays are in

the range [d – u, d] for some u >0. We show that in this model there is a

gap between the upper bounds for sequential consistency and the lower

bounds for linearizability, for all three object types. The lower bounds state

that the worst-case time for a read is at least u/4 and the worst-case time for

a write, an enqueue, or a push is at least u/2. Recall that ZL is the

uncertainty in the message delay and can be as large as d. In contrast, we

describe sequentially consistent algorithms that implement these operations

instantaneously.

Intuitively, the algorithms are similar to a snoopy write-through cache

protocol with a write-broadcast policy for bused systems. The main idea is

that, in order to guarantee sequential consistency, it suffices for processes to

update their local copies in the same order. (This is provided immediately in

bused systems.) A simple way to achieve this property is for a centralized

controller to collect update messages and to broadcast them. Using atomic

broadcast it is possible to translate this idea into algorithms that are fully

distributed and that do not rely on a centralized controller. The algorithms do

not rely on timing information and also work in an asynchronous system.

Atomic broadcast [Birman and Joseph 1987] is a communication primitive

that guarantees that every message sent using the primitive is received at

every process, all messages are delivered in the same order at all processes,

and two messages sent by the same process are delivered in the same order

they were sent. Our implementations are described in a modular way so that

they will work with any atomic broadcast algorithm (e.g., Birman and Joseph

[1987], Chang and Maxemchuk [1984], and Garcia-Molina and Spauster

[1989]). The interface to the primitive consists of two operations, ABC-send(m)

to broadcast a message m (possibly consisting of several fields) and ABC-

receive(m) to receive a message m. In analyzing our implementations, we

assume there is a known bound, h, on the time that the atomic broadcast

primitive takes to deliver a message to all processes. Each of our implementa-

tions has one fast operation, which takes time O, and one slow operation,

which takes time h. In the Appendix we describe and prove correct a fast

atomic broadcast algorithm with h = 2 d. By using this algorithm in our
implementations, we obtain implementations in which slow operations take

time 2d = O(d).

ACM TransactIons on Computer Systems, Vol. 12, No 2, May 1994

102 . H, Attiya and J. L. Welch

3.1 Read /Write Objects

We show in Section 3.1.1 that, in any linearizable implementation of a

read/write object, the worst-case response time of both read and write

operations must depend on u. We then present in Section 3.1.2 two sequen-

tially consistent algorithms for read/write objects, one in which reads are

performed instantaneously while the worst-case response time for a write is

O(d), and another in which the roles are reversed.

3.1.1 Lower Bounds for Linearizability. We now show that, under reason-

able assumptions about the pattern of sharing, in any linearizable implemen-

tation of an object, the worst-case time for a read is u/4 and the worst-case

time for a write is u/2. The proofs of these lower bounds use the technique of

shifting, described in Section 2.4.

THEOREM 3.1. Assume X is a read/write object with at least two readers

and a distinct writer. Then any linearizable implementation of X must have

lRead(X)l > u/4.

PROOF. Let p and q be two processes that read X, and let r be a process

that writes X. Assume in contradiction that there is an implementation with

lRead(X)l < u/4. Without loss of generality, assume that the initial value of

X is O. The idea of the proof is to consider an execution in which p reads O

from X, then q and p alternate reading X while r writes 1 to X, and then q

reads 1 from X. Thus, there exists a read RI, say, by p, that returns O and is

immediately followed by a read R ~ by q that returns 1. If q is shifted earlier

by u/2, then R ~ precedes RI in the resulting execution. Since R ~ returns

the new value 1 and RI returns the old value O, this contradicts linearizabil-

ity.

Let k = [Write(X)\\u]. By the specification of X, there is an admissible

execution a, in which all message delays are d – (u\2), consisting of the

following operations (see Figure 2as):

—At time u/4, r does a Write, (X, 1).

—Between times u/4 and (4k. + 1) . (u/4), r does an Ack,(X). (By definition
of k, (4k + 1).(u\4) > (u/4) + lWrite(X)l, and thus, r’s write operation is

guaranteed to finish in this interval.)

—At time 2i . (u/4), p does a ReadP(X), O < i < 2k.

—Between times 2i . (u/4) and (2i + 1).(u/4), p does a RetP(X, Uz,), O < i

s 2k.

—At time (2i + 1’) . (u/4), Q does a Read,(X), O < i < 2h.

—Between times (2 i + 1).(u/4) and (2 i + 2). (u/4), q does a Ret~(X,

U,, +1), O s i s 2k.

Thus, in ops(a), p’s read of u ~ precedes r’s write, q‘s read of Udk+ ~ follows

r’s write, no two read operations overlap, and the order of the values read

8In the figures, time runs from left to right, and each hne represents events at one process.

Important time points are marked at the bottom.

ACM Transactions on Computer Systems, Vol 12, No 2, May 1994

Sequential Consistency versus Llnearizability . 103

process q

process p

process r

Time

process q

process p

process r

Time

yad(x, VI) Read(X, 7.LM+I). .

ftead(X, VO) fiead(X7 V2) Read(X, v~~)

Write(X, 1)

I I I I
o ~ g ‘+

4 2 .

(a)

Read(X, vl) Read(X, W)
.

Read(X, W) pd(X, Vz) ~ad(X, W:)

Write(X, 1)
1 I

I 1 1 I
u o ~—— ~
4

k+!
4 2

(b)

Fig. 2. Executions used in the proof of Theorem 3.1 (a) The execution a. (b) The execution (3.

from Xis Uo, vl, vz,vlk+l. By Iinearizability, VO = O and U1~. ~ = 1. Thus,

there exists j, O < j < 4k, such that v~ = O and Vj. ~ = 1. Without loss of

generality, assume that j is even, so that VJ is the result of a read by p.

Define @ = shi~t(a, q, (u/2)); that is, we shift q earlier by u/2 (see Figure

2b). The result is admissible, since by Lemma 2.3 the message delays to q

become d – u, the message delays from q become d, and the remaining

message delays are unchanged.

As a result of the shifting, we have reordered read operations with respect

to each other at p and q. Specifically, in ops(P), the order of the values read

from X is vl, vo, va, vz,vj+l. v~, Thus, in D we now have VJ. ~ = 1

being read before VI = O, which violates linearizability. ❑

Tmomm 3.2. If X is a read/write object with at least two writers and

a distinct reader, then any linearizable implementation of X must have

Iwritdx)l 2 (u/2).

The proof uses techniques similar to the proof of Theorem 3.1. It constructs

an execution in which, if write operations are too short, linearizability can be

violated by appropriately shifting histories.

PROOF. Let p and q be two processes that write X, and let r be a process

that reads X. Assume in contradiction that there is an implementation with

ACM Transactions on Computer Systems, Vol. 12, No. 2, May 1994.

104 . H. Attlya and J L. Welch

lWrite(X)l < u/2. Without loss of generality, assume that the initial value of
X is O. By the specification of X, there is an admissible execution a such that

—ops(a) is WriteP(X, 1) AckP(X) Write~(X, 2) Ack~(X) Read,(X) Ret,(X, 2);

—WriteP(X, 1) occurs at time O, Write~(X, 2) occurs at time zL/2, and

Read,(X) occurs at time u; and

—the message delays in a are d from p to q, d – u from q to p, and

d – (u/2) for all other ordered pairs of processes.

Let ~ = shi~t(shift(a, p, – (u/2)), q, (zL/2)); that is, we shift p later by

u/2 and q earlier by u/2. The result is still an admissible execution, since by

Lemma 2.3 the delay of a message from p or to q becomes d – u, the delay of

a message from q or to p becomes d, and all other delays are unchanged.

But ops(~) is

Write~(X,2’) Ack~(X)WriteP(X, l) Ackp(X) Read. (X) Ret,(X,2),

which violates linearizability, because r‘s read should return 1, not 2. ❑

The assumptions about the number of readers and writers made in Theo-

rems 3.1 and 3.2 are crucial to the results, since it can be shown that the

algorithms from Theorems 4.2 and 4.3 are correct if there is only one reader

and one writer.

3.1.2 Upper Bounds for Sequential Consistency

Fast reads. We start with the algorithm for fast reads (time 0) and slow

writes (time at most h).

In the algorithm, each process keeps a local copy of every object. A read

returns the value of the local copy immediately. When a write comes into p,

p sends an atomic broadcast containing the name of the object to be updated

and the value to be written; but it does not yet generate an Ack for the write

operation. When an update message is delivered to a process q, q writes the

new value to its local copy of the object. If the update message was originated

by q, then q generates an Ack, and the (unique pending) write operation

returns.

More precisely, the state of each process consists of a copy of every object,

initially equal to its initial value. The transition function of process p

appears in Figure 3.

To prove the correctness of the algorithm, we first show the following

lemma:

LEMMA 3.3. For every admissible execution and every process p, p’s local

copies ta?ze on all of the values contained in write operations, all updates

occur in the same order at each process, and this order preserves the order of

u)rite operations on a per-process basis.

PROOF. By the code, an ABC-send is done exactly once for each write

operation. By the guarantees of the atomic broadcast, each process receives

exactly one message for each write operation, these messages are received in

ACM Transactions on Computer Systems, Vol 12, No. 2, May 1994

Sequential Consistency versus Linearizability . 105

ReadP(X):

generate RetP(X, v), wherevis the vaiue Ofp’scopyof X

WriteP(X, v):

.ABC-send(X, v)

Ai3C-receive(X, u) from q:

set local copy of X to v

if q = p then generate AckP(X) endif

Fig.3. Sequentially consistent fast-read algorithm.

the same order at each process, and this order respects the order of sending

on a per-process basis, ❑

Call the total order of Lemma 3.3 the “Abcast order.”

~EMNfA 3.4. For every admissible execution, every process p, and all objects

X and Y, if read R of object Y follows write W to object X in ops(Q)1p, then R’s

read of p’s local copy of Y follows W‘s write of p’s local copy of X.

PROOF. The lemma is true because W does not end until its update is

performed at its initiator. ❑

THEOREM 3.5. There exists a sequentially consistent implementation of

read/write objects with [Read~ = O and IWrite\ = h.

PROOF. Consider the algorithm just presented. Clearly, the time for any

read is O. The time for any write is the time for the initiator’s ABC-send to be

received by the initiator, which is at most h. The remainder of the proof is

devoted to showing sequential consistency. Fix admissible execution a.

Define the sequence of operations ~ as follows: Order the writes in a in

Abcast order. Now we explain where to insert the reads. We proceed in order

from the beginning of u. [Readp(X), RetP(X, u)] goes immediately after the

latest of (1) the previous operation for p (either read or write, on any object)

and (2) the write that spawned the latest update of p’s local copy of X

preceding the generation of the RetP(X, u). (Break ties using process IDs; e.g.,

if every process reads some object before any process writes any object, then T

begins with pi’s read, followed by pz’s read, etc.)

We must show ops(cr)1p = T I p for all processes p. Fix some process p. The

relative ordering of two reads in ops(o-)1p is the same in ~ Ip be definition of

~. The relative ordering of two writes in ops(a)1p is the same in ~ \p by

Lemma 3.3. Suppose in ops(u)1p that read R follows write W. By definition

of r, R comes after W in r.

Suppose in ops(w)1p that read R precedes write W. Suppose in contradic-

tion that R comes after W in ~. Then in a there is some read R’ =

[ReadF(X), RetP(X, u)] and some write W’ = [Write, (x, .), Ack,(X)] such
that (1) R’ equals R or occurs before R in m, (2) W‘ equals W or follows W in

the Abcast order, and (3) W‘ spawns the latest update to p‘s copy of X that

ACM TransactIons on Computer Systems, Vol. 12, No, 2, May 1994,

106 . H. Athya and J. L. Welch

precedes R”s read. But, in cr, R’ finishes before W starts. Since updates are

performed in ~ in Abcast order (Lemma 3.3), R’ cannot see W‘’s update, a

contradiction.

We must show that ~ is legal. Consider read R = [ReadP(X), RetP(X, u)] in

~. Let W be the write in o that spawns the latest update to p‘s copy of X

preceding R’s read of p’s copy of X. Clearly, W = [Write~(X, u), Ack~(X)] for

some q. (If there is no such W, then consider an imaginary write at the

beginning of cr.) By the definition of T, R follows W in r. We must show that

no other write to X falls in between W and R in r. Suppose in contradiction

that W’ = [Write, (X, w), Ack.(X)] does. Then, by Lemma 3.3, the update for

W‘ follows the update for W at every process in m.

Case 1: r = p. Since r preserves the order of operations at p, W‘ precedes

R in v. Since the update for W‘ follows the update for W in w, R sees W‘’s

update, not W ‘s, contradicting the choice of W.

Case 2: r #p. By definition of r, there is some operation in ops(v)1p

that, in r, precedes R and follows W‘ (otherwise, R would not follow W‘). Let

O be the first such operation.

Suppose O is a write to some object Y. By Lemma 3.4, O’s update to p‘s

copy of Y precedes R’s read of p’s copy of X. Since updates are done in

Abcast order, the update for W’ occurs at p before the update for O, and

thus, before R’s read, contradicting the choice of W.

Suppose O is a read. By the definition of ~, O is a read of X, and W‘’s

update to p’s copy of X is the latest one preceding O’s read (otherwise, O

would not follow W‘). Since updates are done in Abcast order, the value from

W’ supersedes the value from W, contradicting the choice of W. ❑

Theorem 3.1 implies that this algorithm does not guarantee linearizability.

We can also explicitly construct an admissible execution that violates lin-

earizability as follows: The initial value of X is 0, Process p writes 1 to X.

The ABC-send for the write occurs at time t. It arrives at process r at time t

and at process q at time t + h. Meanwhile, r performs a read at time t and

gets the new value 1, while q performs a read at time t + h/2 and gets the

old value O. No permutation of these operations can both conform to the

read/write specification and preserve the relative real-time orderings of all

nonoverlapping operations.

Fast writes. We now discuss the algorithm that ensures sequential consis-

tency with fast writes (time O) and slow reads (time at most h). When a

Read(X) comes into p, if p has no pending updates (to any object, not just

X) that it initiated, then it returns the current value of its copy of X.

Otherwise, it waits for all pending writes to complete and then returns. This

is done by maintaining a count of the pending writes and waiting for it to be

zero. When a Write(X) comes into p, it is handled very similarly to the other

algorithm; however, it is Acked immediately. Effectively, the algorithm

ACM TransactIons on Computer Systems, Vol 12, No, 2, May 1994

Sequential Consistency versus Linearizability . 107

pipelines write updates generated at the same process. Specifically, the state

of each process consists of the following variables:

—num: integer, initially O (number of pending updates initiated by this

process); and

—copy of every object, initially equal to its initial value.

The transition function of process p appears in Figure 4.

THEOREM 3.6. There exists a sequentially consistent implementation of

read/write objects with IReadl = h and IWrite I = O.

PROOF. Consider the algorithm just presented. Clearly, every write takes

O time. The worst-case time for a read occurs if the return must wait for the

initiator to receive its own ABC-send for a pending write. This takes at most

h time. The structure of the proof of sequential consistency is identical to that

in the proof of Theorem 3.5. We just need a new proof for Lemma 3.4. Lemma

3.4 is still true for this algorithm because when a Read occurs at p, if any

update initiated by p is still waiting, then the Return is delayed until the

latest such update is performed. ❑

Theorem 3.2 implies that this algorithm does not guarantee linearizability.

An explicit scenario is easy to construct as well.

3.2 FIFO Queues

We show in Section 3.2.1 that, in any linearizable implementation of a FIFO

queue, the worst-case response time of an enqueue operation must depend on

u. We then present in Section 3.2.2 a sequentially consistent implementation

in which enqueue operations return instantaneously, while the worst-case

response time for a dequeue operation is h.

3.2.1 Lower Bound for Linearizability. We show that in any linearizable

implementation of a FIFO queue the worst-case time for an enqueue is u/2

(assuming that at least two processes can enqueue to the same FIFO queue).
The proof uses the technique of shifting, described in Section 2.4.

THEOREM 3.7. If Q is a FIFO queue with at least two enqueuers and a

distinct dequeuer, then any linearizable implementation of Q must have

lEnq(Q)l > (u/2).

PROOF. Let p and q be two processes that can enqueue to Q, and let r be

a process that dequeues from Q. Assume in contradiction that there is an

implementation with IEnq(Q)l < (u/2). Initially, Q is empty. By the specifi-

cation of Q, there is an admissible execution a such that

—ops(a) is EnqP(Q, l) AckP(Q)Enq~(Q, 2) Ack~(Q)Deq,(Q) Retr(Q, 1);

—EnqP(Q, 1) occurs at time O, Enq~(Q, 2) occurs at time u/2, and Deqr(Q)
occurs at time u; and

—the message delays in a are d from p to q, d – u from q to p, and

d – (u/2) for all other ordered pairs of processes.

ACM Transactions on Computer Systems, Vol. 12, No. 2, May 1994.

108 . H. Attiya and J. L. Welch

Read.(X):

if mum = O then

generate RetP(X, w), where ?, is the value of p’s copy of X

endif

W-iteP(X, v)

num := mum + 1

AEIC-send(X, v)

generate AckP(X)

Af3C-recelve(X, v, t) from q:

sec local copy of X to v

if p = q then

num := num —1

if num = O then

generate RetP(X, v), where u is the value of p’s copy of X

endif

endif

Fig. 4. Sequentially consistent fast-write algorithm

Let ~ = sl-zi~t(shift(a, p, –(zL\2)), q, u/2); that is, we shift p later by zt\2

and q earlier by u/2. The result is still an admissible execution, since by

Lemma 2.3 the delay of a message from p or to q becomes d – u, the delay of

a message from q or to p becomes d, and all other delays are unchanged. But

ops(/3) is

Enqq(Q,2)Ack~(Q) EnqP(Q, l) Ackp(Q) Deq,(Q)Ret,(Q, 1),

which violates linearizability, because Z-’s dequeue should return 2, not 1 (by

the FIFO property). ❑

The assumption about the number of enqueuers made in Theorem 3.7 is

crucial to the results, since it can be shown that the algorithm of Theorem 4.6

is correct if there is only one enqueuer.

3.2.2 Upper Bound for Sequential Consistency. Informally, the algorithm

works as follows: Each process keeps a local copy of every object. When a

request to enqueue v to Q comes into p, p broadcasts an update message

with the object name, the operation name, and the value to be enqueued to all

processes. The operation returns immediately. When a request to dequeue

from Q comes into p, p broadcasts an update message with the object name

and the operation name. It does not generate a response.

When an update message (either “deq” or “enq”) is delivered to a process, it

handles it by performing the appropriate change (enqueue or dequeue) to the

local copy of the object. If the update is a dequeue by the same process, the

dequeue operation that is currently waiting returns the value that was

ACM TransactIons on Computer Systems. VOI 12, No, 2, May 1994

Sequential Consistency versus Linearizability . 109

dequeued from the local copy. (Note that, by well formedness, there is only

one pending dequeue operation for a given process.)

In more detail, the state of each process consists of the following variables:

—copy of every object, initially equal to its initial value; and

—val: value (of a queue element).

The transition function of process p appears in Figure 5.

To prove correctness of the algorithm, we show the following lemma:

LEMMA 3.8. In every admissible execution, all updates are done exactly

once at each local copy, updates are done in the same order at each process,

and this order preserves the per-process order.

THEOREM 3.9. There exists a sequentially consistent implementation of

FIFO queues with /Enql = O and lDeql = h.

PROOF. Consider the algorithm just presented. Clearly, the time for an

enqueue is O, and the time for a dequeue is at most h. The remainder of the

proof is devoted to showing sequential consistency. Fix some admissible

execution a.

Define the sequence of operations ~ as follows: Order the operations in u

by Abcast order. From Lemma 3.8 it follows that operations by p are ordered

in I- as they were ordered in m; thus, ops(u)1p = ~ Ip, for all processes p. It

remains to show that 7 is legal, that is, that for every FIFO queue Q, 7 IQ is

in the serial specification of Q. Pick any Q, and consider ~ IQ = op ~Opz

Suppose OPL is [Deqp(Q), Retp(Q, rJ)1.Since the local updates at p occur in
Abcast order (Lemma 3.8), updates at p to the local copy of Q occur in the

same order as in ~, and the claim follows. ❑

Theorem 3.7 implies that this algorithm does not guarantee linearizability.

It is also possible to construct an explicit scenario that violates linearizability.

3.3 Stacks

These results are analogous to those for FIFO queues with Pop in place of

Deq and Push in place of Enq.

THEOREM 3.10. If S is a stack with at least two pushers and a distinct

popper, then, for any linearizable implementation of S, IPush(S)l > (u/2).

THEOREM 3.11. There exists a sequentially consistent implementation of

stacks with lPushl = O and lPopl = h.

4. PERFECT CLOCKS

In the previous section, we have shown a gap between the cost of implement-

ing sequential consistency and the cost of implementing linearizability. This

separation hinged on the assumption that clocks are not initially synchro-
nized. In this section we show that this assumption is necessary by consider-

ing the case in which processes have perfectly synchronized (perfect) clocks

ACM TransactIons on Computer Systems, Vol. 12, No. 2, May 1994

110 . H. Attiya and J, L Welch

Ewp[Q, u):
ABC-send(Q, v, “enq”)

generate .AckP (Q)

Deqp(Q):

Fig, 5. Sequentially consistent fast-enqueue
ABC-send(Q, ‘Ldeq”)

algorithm.
ABC-receive(Q, v, “enq”) from q:

enqueue v on local copy of Q

ABC-receive(Q, “deq”) from q:
val := dequeue local copy of Q

if P = q then generate R.etP(Q,val) endif

and message delay is constant and known. g Another contribution of these

results is that our lower bounds for this model also hold a fortiori in more

realistic models. Perfect clocks are modeled by letting CP(t) = t for all p and

t. The constant message delay is modeled by letting u = O; d is known and

can be used by the MCS.

For each of the three object types, we first prove lower bounds on the

worst-case response time for sequentially consistent implementations. Since

sequential consistency is a weaker condition than Iinearizability, these bounds

also hold for linearizable implementations. Then we present algorithms that

achieve linearizability and, hence, sequential consistency, with worst-case

response times matching the lower bounds. Section 4.1 considers read/write

objects, Section 4.2 considers FIFO queues, and Section 4.3 considers stacks.

4.1 Read /Write Objects

We show in Section 4.1.1 that for sequential consistency the sum of the

worst-case response times of read and write operations is at least d, even in

this strong model. This is a formalization of a result of Lipton and Sandberg

[1988, Theorem 11, making precise the timing assumptions made on the
system. We then show in Section 4.1.2 that the lower bound is tight for this

model by describing two linearizable algorithms that match the lower bound

exactly: In the first algorithm, reads are performed instantaneously, while

the worst-case response time for a write is d. In the second algorithm, writes

are performed instantaneously, while the worst-case response time for a read

is d.

gThe assumptions that processes have perfect clocks and that message delays are constant (and

known) are equivalent, If one assumes that clocks are not necessarily synchromzed perfectly (but

run at the rate of real time) and that the message delay is constant and known, then a simple

algorithm suffices to synchronize the clocks perfectly. If one assumes that clocks are perfectly

synchronized and that there is a known upper bound d on message delays, then constant

message delays can be easily simulated by time-stamping each message with the clock time of

the sender and having each recipient delay any message that arrives with a delay smaller than d

until the delay is exactly ct.

ACM Transactions on Computer Systems, Vol 12, No. 2, May 1994

Sequential Consistency versus Linearizability . 111

4.1.1 Lower Bounds for Sequential Consistency

THEOREM 4.1 [Lipton and Sandberg 1988]. For any MCS that is a sequen-

tially consistent implementation of two read/write objects X and Y, ~Write ~+

\Readl > d.

PROOF. Let p and q be two processes that access X and Y. Assume by

contradiction that there exists a sequentially consistent implementation of X

and Y for which both IWrite(X)l + IRead(Y)l < d and IWrite(Y)l + IRead(X)l

< d. Without loss of generality, assume that O is the initial value of both X

and Y.

By the specification of Y, there is some admissible execution al such that

ops(al) is

WriteP(X, l) AckP(X) ReadP(Y) RetP(Y, O),

WriteP(X, 1) occurs at real time O, and ReadP(Y) occurs immediately after

AckP(X). By assumption, the real time at the end of al is less than d. Thus,

no message is received at any node during al.

By the specification of X, there is some admissible execution az such that

ops(az) is

Write, (Y, 1) Ack~(Y) Read~(X) Ret~(X, O),

Write~(Y, 1) occurs at real time O, and Read~(X) occurs immediately after

Ack~(Y). By assumption, the real time at the end of az is less than d. Thus,

no message is received at any node during az.

Since no message is ever received in al and a2, the execution a obtained

from al, by replacing q’s history with q’s history in az, is admissible.

Then ops(a) consists of the operations [WriteP(X, 1), AckP(X)l followed

by [ReadP(Y), RetP(X, O)], and [Write~(Y, 1), Ack~(Y)l followed by

[Read,(X), Retq(X, O)].

By assumption, a is sequentially consistent. Thus, there is a legal opera-

tion sequence ~ consisting of the operations [WriteP(X, 1), AckP(X)] followed

by [ReadP(Y), RetP(Y, 0)1, and [WriteQ(Y, 1), Ack~(l’)1 followed by

[Read~(X), Ret ,(X, 0)1. Since r is a sequence of operations, either the read of
X follows the write of X, or the read of Y follows the write of Y. But each

possibility violates the serial specification of either X or Y, contradicting ~

being legal. ❑

4.1.2 Upper Bounds for Linearizability. In this section we show that the

trade-off suggested by Theorem 4.1 is inherent and that a sequentially

consistent implementation may choose which operation to slow down. More

precisely, we present an algorithm in which a read operation is instantaneous

(local), while a write operation returns within time d; we also present an
algorithm in which the roles are reversed. These algorithms actually ensure

the stronger condition of linearizability.

The algorithm for fast reads and slow writes works as follows: Each process
keeps a copy of all objects in its local memory. When a ReadP(X) occurs, p

reads the value u of X in its local memory and immediately does a Ret P(X, u).

ACM Transactions on Computer Systems, Vol. 12, No. 2, May 1994.

112 . H. Athya and J. L. Welch

When a WriteP(X, u) occurs, p sends “write(X, u)“ messages to all other

processes. Then p waits d time, after which it changes the value of X to u in

its local memory and does an AckP(X). Whenever a process receives a

“ write(X, u)“ message, it changes the value of X to u in its local memory. (If

it receives several at the same time, it “breaks ties” using sender IDs; that is,

it writes the value in the message from the process with the largest ID and

ignores the rest of the messages.)

TH~O~~NI 4.2. There exists a linearizable implementation of read/write

objects with lReadl = O and lWritel = d.

PROOF. Consider the algorithm just described. Clearly, the time for every

read is O, and the time for every write is d.

Let a be an admissible execution of this algorithm. For each operation in

a, say that it occurs at the real time when its response happens. Let ~ be the

sequence of operations in u ordered by time of occurrence, breaking ties with

process IDs. Clearly, ops(CJ)1p is equal to 7 Ip for all p, and the order of

nonoverlapping operations is preserved.

It remains to show that ~ is legal, that is, for every object X, T IX is in the

serial specification of X. Since X is a read/write object, we must show that

every Read returns the value written by the latest preceding Write (and if

there is no such Write, then it returns the initial value).

Pick any X, and consider ~lX = Oplopz Suppose op, is [ReadP(X),

RetP(X, u)] and op, occurs at time t in m.

Case 1. No Write precedes op, in r. By the definition of r, no Write is

Acked before Opl starts. Since the Ack for a Write happens at the same time

that every process updates its local copy of X, the Read reads the initial

value for X and returns that value.

Case 2. Some WriteP(X, u) is the latest Write preceding Opl in r. By the

definition of r, this Write is Acked before opt starts, but no other Write is

Acked before Opi starts. Since the Ack for a Write happens at the same time

that every process updates its local copy of X, the Read reads u for the value

of X and returns that value. ❑

The algorithm for slow reads and fast writes is similar to the previous one.

Each process keeps a copy of all objects in its local memory. When a

ReadP(X) occurs, p waits d time, after which it reads the value u of X in its

local memory and immediate] y does a Retp(X, u). When a WriteP(X, u)
occurs, p sends “ write(X, u)“ messages to all other processes (including a

dummy message to itself, which is delayed d time) and does an Ack immedi-

ately. Whenever a process receives a “write(X, u)“ message, it changes the

value of X to u in its local memory. Ties are resolved as in the previous

algorithm.

THEOREM 4.3. There exists a linearizable implementation of read/write

objects with lReadl = d and lWritel = O.

ACM Transactions on Computer Systems, Vol. 12, No. 2, May 1994,

Sequential Consistency versus Linearizability . 113

PROOF. Consider the algorithm just described. Clearly, the time for every

read is d, and the time for every write is O.

Let a be an admissible execution of this algorithm. For each operation in

m, say that is occurs at the real time when its call happens. Let 7 be the

sequence of operations in w ordered by time of occurrence, breaking ties with

process IDs. Clearly, ops(a)1p is equal to ~ Ip for all p, and the order of

nonoverlapping operations is preserved.

It remains to show that r is legal, that is, for every object X, ~ IX is in the

serial specification of X. Since X is a read write object, we must show that

every Read returns the value written by the latest preceding Write (and if

there is no such Write, then it returns the initial value).

Pick any X, and consider rlX = Oplopz Suppose Opl is

[ReadP(X), RetP(X, v)] and op, occurs at time t in u.

Case 1. No Write precedes op, in t.By the definition of ~, no Write starts

before op, starts. Since the local changes occur d time after the Write starts

and the Read reads the local memory d time after the Read starts, it reads

the local memory before any change is made to it. Thus, the Read returns the

initial value.

Case 2. Some WriteP(X, u) is the latest Write preceding Opi in ~. Essen-

tially, the same argument as in Case 1 works. ❑

4.2 FIFO Queues

We show in Section 4.2.1 that for sequential consistency the worst-case

response time of a dequeue operation is at least d, even when clocks are

perfectly synchronized and message delays are constant. We then show in
Section 4.2.2 that this lower bound is tight for this model by describing a

Iinearizable algorithm that matches the lower bound exactly: Enqueues are

performed instantaneously, while dequeues take time d.

4.2.1 Lower Bound for Sequential Consistency.

TH~OR~M 4.4. For any sequentially consistent implementation of a FIFO

queue Q, lDeq(Q)l > d.

PROOF. Let p and q be two processes that access Q. Assume by contradic-

tion that there exists a sequentially consistent implementation of Q for

which IDeq(Q)l < d. Let T = IDeq(Q)l. By definition, the queue Q is initially

empty. 10 B the specification of Q, there is some admissible execution a!Y
such that ops(a~) is

Enq~(Q,l)Ack~(Q) DeqP(Q) RetP(Q, vi)...

DeqP(Q)RetP(Q, v,) ““”,

Enq~(Q, 1) occurs at real time O, and AckP(Q) occurs at time t; the first

DeqP(Q) occurs at time t,while the jth Deqp(Q) occurs at time t + (j – l)T

‘0 If we allow queues to be initially nonempty, the proof of the lower bound becomes much

simpler; we leave the details to the interested reader.

ACM Transactions on Computer Systems, Vol. 12, No. 2, May 1994.

114 . H. Attiya and J. L, Welch

(see Figure 6a). Consider now the infinite sequence v ~,... , u,, ,.. . It is

possible that many of them are L ; however, since only a finite number of

Deq operations can be serialized before the Enq operation, we have the

following lemma:

LEMMA 4.5. There exists some i such that u, # L .

Fix this particular i, and note that u, = 1 and, for all j, 1< j < i, UJ = L .

Let al be a~ truncated after the ith Deq operation by p. More precisely,

Ops(al) is

Ewq(Q, l) Ack~(Q) Deqp(Q)RetP(Q, L) ~~~

DeqP(Q)RetP(Q, L) DeqP(Q)RetP(Q, 1).

Enq ~(Q, 1) occurs at real time O, and Ack~(Q) occurs at time t; the first

DeqP(Q) occurs at time t, while the ith DeqP(Q) occurs at time t + (i– l)T

(see Figure 6b). It is clear that the Uj’s are exactly as in a;. By assumption,

the real time at the end of a is less than t + (i – l)T + d. Thus, no message

sent after t + (i — l)T is received during al.

We now consider the execution where the ith (and last) dequeue by p is

replaced with a dequeue by q. More precisely, by the specification of Q, there

is some admissible execution az such that ops(az) is

Enq~(Q, l) Ack~(Q)DeqP(Q) RetP(Q, ~) . . .

DeqP(Q)RetP(Q, ~) Ikqq(Q)l%tq(Q, u),

Enq~(Q, 1) occurs at real time O, and Ack~(Q) occurs at time t; the first

DeqP(Q) occurs at time t, while the (i – l)st DeqP(Q) occurs at time t + (i –

2)T, and Deq~ occurs at time t + (i – l)T (see Figure 6c). Since az is

sequentially consistent, it follows that u = 1. By assumption, the real time at

the end of ag is less than t + (i– l)T + d. Thus, no message sent after

t + (i – l)T is received during az.

Consider now an execution a obtained from al by replacing q‘s history

with q‘s history in a ~. No message sent after time t + (i– l)T is ever

received in al or az, and al and az are identical until time t + (i – l)T.

This implies that a is admissible. Then ops(a) is

Enqq(Q, l) Ackq(Q)Deqp(Q) Retp(Q, 1) ““”

Dqp(Q)Retp(Q, l) Deq~(Q), Ret~(Q, 1)

(see Figure 6d). By assumption, a is sequentially consistent. Thus, there is a
legal sequence ~, which is a permutation of the above operations. However, in

~ the element “l” is enqueued once, but dequeued twice, a contradiction. ❑

4.2.2 Upper Bound for Linearizability. In this section we show that the

lower bound given in Theorem 4.4 is tight for the model with perfect clocks,

Specifically, we present an algorithm in which an enqueue operation returns

instantaneously, while a dequeue operation returns within time d. The

algorithm ensures the stronger condition of linearizability.

ACM Transactions on Computer Systems, Vol. 12, No. 2, May 1994

Sequential Consistency versus Linearizability . 115

Deq(Q, VI) Deq(Q, Vz) Deq(Q, vi-l) Deq(Q, U)process p ~ ~ ““”’”. ~ ~ .

,Enq(Q, 1)[
process q

Time I I ! I
o t t+T t+(i–2)T ‘t+(i-l)T

Deq(Q, 1)
process p

>

process q

Time

process p

process q

Time

process p

process q

Time

Enq(Q, 1)

I I
o t

Enq(Q, 1)

I I
o t

,Deq(Q,l)[

Enq(Q, 1)

I I
o t

(a)

Deq(Q, 1) Deq(Q, 1) Deq(Q, 1)
~~ ~

I I
i+T t+(i–2)T ‘t+(i-l)T

(b)

Deq(Q, -L) Deq(Q, 1)
~~

Deq(Q, u)

[I
t+T t+(i–2)T ‘t+(i-l)T

(c)

D4Q, 1), , ,.,,,, Deq(Q, L) Deq(Q, 1)
~~

Deq(Q, 1)
I

1 I
t+T t+(i–2)T’t+(i-l)T

(d)

Fig. 6. Executions used in the proof of Theorem 4.4 (a) Execution aj. (b) Execution al. (c)

Execution a2. (d) Execution a.

The algorithm works as follows: Each process keeps a copy of all queues in

its local memory. When an Enq P(Q, u) occurs, p sends “enqueue(Q, u)“

messages to all other processes (including a message to itself which is delayed

d time) and does an Ack immediately. When a DeqP(Q) occurs, p sends

“dequeue(Q)” messages to all other processes (including a message to itself

which is delayed d time). After waiting d time, p handles its own message

and does a RetP(Q, u). Whenever a process receives an “enqueue(Q, v)” or
“dequeue(Q)” message, it makes the appropriate update to the copy of Q in

its local memory. (If it receives several messages at the same time, it “breaks

ACM Transactions on Computer Systems, Vol. 12, No. 2, May 1994.

116 . H. Attlya and J. L. Welch

ties” using sender IDs; that is, it handles them by increasing order of process

IDs.)

THEOREM 4.6. There exists a linearizable implementation of FIFO queues

with lEnql = O and lDeql = d.

In the proof we serialize each operation to occur d time after it is called.

Since all processes update their local copies at these serialization times, the

claim follows:

PROOF. Consider the algorithm just described. Clearly, I,?lrzq I = O, and

lDeql = d.

Let a be an admissible execution of this algorithm. For each operation in

u, say that it occurs at time d after the real time when its call happens. Let 7

be the sequence of operations in a ordered by time of occurrence, breaking

ties with process IDs. Clearly, ops(a)1p is equal to ~ Ip for all p, and the

order of nonoverlapping operations is preserved.

It remains to show that ~ is legal; that is, for every object Q, ~ IQ is in the

serial specification of Q. Pick any Q, and consider r IQ = op ~Opz Suppose

opt k [lkqp(Q), Retp(Q, u)1. Because the message delay is fixed, updates
at p to the local copy of Q occur in the same order as in T, and the claim

follows. ❑

4.3 Stacks

The results for stacks are analogous to those for FIFO queues, with Pop

playing the role of Deq and Push the role of Enq.

THEOREM 4.7. For any sequentially consistent implementation of a stack S,

Ipop(S)l > d.

THEOREM 4.8. There exists a linearizable implementation of stacks with

lPushl = O and lPopl = d.

5. CONCLUSIONS AND FURTHER RESEARCH

We have presented a quantitative comparison of the data access time for two

well-known consistency conditions for concurrently accessed shared data:

sequential consistency and linearizability. Our results indicate that support-

ing sequential consistency can be more cost effective than supporting lin-

earizability, for certain object types and under certain timing assumptions.

Our results also show that a very precise definition of the guarantees

provided is important, since seemingly minor differences in the definitions
result in significant differences in the inherent efficiency of implementing

them. Since our lower bounds are proved in a very strong model, they clearly

hold for more practical systems. We believe our algorithms can be adapted to

work in more realistic systems.

Our work is closely related to the design of cache consistency schemes that

guarantee sequential consistency [Brantley et al. 1985; Censier and Feautrier

1978; Collier 1984; Dubois et al. 1986b; Lamport 1979]. Our implementations

use ideas similar to those previously used in cache coherence protocols (cf.,

ACM TransactIons on Computer Systems, Vol. 12, No. 2, May 1994

Sequential Consistency versus Linearizability . 117

Archibald and Baer [1986]). In a sense, we have snooping protocols (without a

bus) with a write broadcast policy (cf., Hennessey and Patterson [1990, pp.

467–469]). We believe our ideas can be modified to accommodate a write

invalidate policy; however, this will slow down the reads.

Our results can be extended to obtain bounds on the response time of

implementing other objects, for example, Test & Set registers, under sequen-

tial consistency and linearizability. Further work in this direction is currently

under way [Friedman 1993; Kosa 1994].

The modular usage of atomic broadcast in our implementations of sequen-

tial consistency admits several extensions. For example, a bus provides an

easy mechanism for atomic broadcast by enforcing a global ordering on all

messages delivered to the processes. Afek et al. [1993] present a sequentially

consistent implementation of read/write objects, for systems where processes

communicate via a bus. It might be possible to improve and simplify the

correctness proof of the algorithm in Afek et al. [1993] using this observation.

Also, atomic broadcast algorithms can be made fault-tolerant. This can help

in the design of MCSS that can sustain failures of some of the processes. In

general, the issue of fault-tolerance is rarely addressed in the current re-

search on memory consistency. As multiprocessors scale up and the probabil-

ity of failure increase, this will become an important concern.

Following the original appearance of our results [Attiya and Welch 1991],

Mavronicolas and Roth [1992] have shown that the trade-off IW I + IRI = d

for sequential consistency is indeed continuous and that there are algorithms

that achieve all intermediate values. Furthermore, they have shown that the

0(u) bounds we prove for linearizability in the approximate clocks model are

tight, by extending our algorithms for the perfect-clocks model. It is known

that u depends on how closely the clocks in the system are synchronized.

Since closely synchronized clocks admit more efficient implementations of

linearizability, it may be worthwhile to provide such clocks.

Recently, several nonglobal conditions that are weaker than sequential

consistency have been suggested, for example, weak ordering [Adve and Hill

1990b; Bisiani et al. 1989; and Dubois et al. 1986a]; release consistency

[Gharachorloo et al. 1990; Gibbons et al. 1991]; pipelined memory [Lipton and

Sandberg 1988]; slow memory [Hutto and Ahamad 1989]; causal memory

[Ahamad et al. 1990]; loosely coherent memory [Bennett et al. 1990]; and the

definitions in Collier [1984] and Ramachandran et al. [1989]. It would be

interesting to investigate the inherent efficiency of supporting these consis-

tency guarantees. In order to do so, crisp and precise definitions of these

conditions are needed. Results in this direction appear in Attiya and Fried-

man [1992] and in Attiya et al. [1993].

The cost measure we have chosen to analyze is response time, but it is clear

that efficiency, in general, and response time, in particular, are not the only

criteria for evaluating consistency guarantees. Other important quantitative

measures are amount of local processing and level of message traffic. It has
been suggested that it may be possible to implement linearizability more

cheaply than sequential consistency with regard to these measures, since

Iinearizability is a local property and sequential consistency is not. More

ACM Transactions on Computer Systems, Vol 12, No. 2, May 1994

118 . H. Athya and J. L. Welch

qualitative properties such as the ease of designing, verifying, programming,

and debugging algorithms using such shared memories are also very impor-

tant.

Our formal model ignores several important practical issues, for example,

limitations on the size of local memory storage, network topology, clock drift,

and “hot-spots.” It will be interesting to understand how these issues influ-

ence the bounds.

As multiprocessor systems become larger, distributed implementations of

shared virtual memory are becoming more common, since truly shared

memories, or even buses, cannot be used in systems with a large number of

processors. Such implementations and their evaluation relate issues concern-

ing multiprocessor architecture, programming language design, software en-

gineering, and the theory of concurrent systems. (For instance, our work

makes use of shifting and atomic broadcast techniques from the theoretical

and practical distributed computing literature.) We hope our work con-

tributes toward a more solid ground for this interaction.

APPENDIX

Atomic Broadcast

The atomic broadcast algorithm employed by our algorithms is based on

assigning time stamps to messages. Each process maintains a local time

stamp (counter) and a vector with (conservative) estimates of the time stamps

of all other processes. A process keeps a time stamp bigger than or equal to

the time stamps of all the other processes (according to its estimates). Upon a

request to broadcast a message, the message is tagged with the requestor’s

current time stamp. Each process maintains a set of messages that are

waiting to be delivered. A message with time stamp x is delivered only when

the process is certain that all other messages with a time stamp < x have

arrived at it. This is done by waiting to learn that all processes have

increased their time stamps to be at least x + 1.11 Once it learns that all

processes have increased their time stamps beyond x, the process handles all

pending messages with time stamps less than or equal to x, in order,

breaking ties using process IDs.

More precisely, to broadcast a message m, p sends a message (tP, m) to all

processes (including itself), where tp is p’s current time stamp. It then

increases its own time stamp by one and returns. When a process q receives

a message with time stamp tp from p, it saves it in a list of pending
messages, sorted by time stamp and process ID. It then increases its time

stamp to be at least as large as tP + 1 and sends a time stamp increase

message “timestamp(tq,q)“.

When a process receives a time stamp increase message, it update the time

stamp entry for the sender and checks to see if there are any pending

11For slmpliclty, the algorithm presented here assumes FIFO channels This assumption can be

removed if sequence numbers are employed.

ACM TransactIons on Computer Systems, Vol. 12, No. 2, May 1994

Sequential Consistency versus Linearlzability . 119

messages whose time stamp is strictly less than all processes’ time stamps

(saved in its local vector). These messages are delivered in increasing time
stamp order, breaking ties using process IDs.

The algorithm uses the following data types:

time stamp = integer,

message = record with fields.

mess: string (message to be delivered),

ts: time stamp (assigned by initiator),

ID: process ID (ID of initiator).

Each process knows n, the total number of processes.

The state of each process consists of the following components:

ts: array[l . . . n] of integer, all initially O

(esimate (from below) time stamps of all processes),

pending: set of message, initially empty

(set of messages waiting to be delivered).

The transition function of process p appears in Figure 7.

To show that this algorithm implements atomic broadcast, we must show,

for any admissible execution, that messages are delivered in the same order

to all processes. The ordering of messages is done by time stamps (breaking

ties with process IDs). The resulting sequence respects- the order at each

process by construction and because of the way time stamps are assigned.

More formally, fix some admissible execution u of the algorithm. The next

lemma follows immediately from the code:

LEMMA A. 1. Let p be any process. Then every message broadcast by p in w

is given a unique time stamp in increasing order.

This immediately implies Lemma A.2:

LEMMA A.2. The time stamps assigned to messages in w, together with

process IDs, form a total order.

This total order is called time stamp order.

LEMMA A.3. Let p be any process. Then all messages are delivered top in cr

in time stamp order.

PROOI?. Let (tl, ql) be the time stamp of the message ml, and let (t2,q2)

be the time stamp of the message mz. Suppose, by contradiction, that

(tl, ql) < (tz, qz), but m~ was delivered to P before ml.
When mz is delivered to p, it cannot yet have the message ml in pending

because otherwise it would deliver it before mz. By the code, in order to

deliver mz, it must be that tsP[ql] > tz. But then p must have received a

time-stamp message from ql with a time stamp t > t2+ 1.Since (t~,ql) <

(t2,qz), it must be that tl< t2,and hence, t > tl.By the code, the message

ACM TransactIons on Computer Systems, Vol. 12, No. 2, May 1994.

120 . H. Attiya and J. L. Welch

AEfC-sendF(7n):

send (ts[p],m) to all processes

ts~] :== ts~] + 1

receive (t,m] from q:

add (m, t,q) topending

if t + 1 > ts~] then

ts[p] := t + 1

send timestamp(ts[p]) to all processes

endif

receive timestamp(t) from q:
ts[q] := f

repeat

let E be element with smaUest (ts,id) pair Jn pending

if for some q, ts[g] < E.ts then ex]t

deliver E.TTL { this is ~he .ABC-rece~ve }

remove E from pending

endrepeat

Fig. 7, Atomic broadcast algorithm

ml was sent before the time-stamp message. But then the FIFO property of

the communication system implies that p has already received ml—a con-

tradiction. ❑

The next lemma guarantees that each message is delivered within time 2 d

from the initiation of the operation.

h3MNIA A.4. If process p broadcasts a message m, then m is delivered at

each process within time at most 2d in ~.

PROOF. Assume p broadcasts m at time T, with time stamp x. By time

T + d, all processes will get the message (x, m) and will set their time

stamps to be at least x + 1, sending a time-stamp increase message to all

other processes, if necessary. Thus, by time T + 2 d, all processes will have in

their time-stamp vectors values that are strictly larger than x and will

deliver m. ❑ .

Lemmas A.3 and A.4 prove the following theorem:

T’~BO~MM A.5. The algorithm in Figure 7 is an atomic broadcast algorithm

with h = 2d.

ACKNOWLEDGMENTS

The authors thank Sarita Adve, Roy Friedman, Mark Hill, and Rick Zucker

for helpful comments on an earlier version of this paper. We especially thank

Martha Kosa for a careful reading. The comments of the anonymous referees

helped us improve the presentation.

ACM TransactIons on Computer Systems, Vol 12, No, 2, May 1994

Sequential Conwtency versus Llnearizability . 121

REFERENCES

AWE, S., AND HILL, M. 1990a. Implementing sequential consistency in cache-based systems.

In Proceedings of the International Conference on Parallel Processing. Pennsylvania State

University, University Park, pp. 1-47-1-50.

ADVE, S., AND HILL, M. 1990b. Weak ordering—A newdefinition. In Proceedings of the 17th

International Symposium on Computer Architecture (Seattle, Wash., May 21-31). IEEE, Los

Angeles, pp. 2-14.

AFEK, Y., BROWN, G., AND MERRITT, M. 1993. Lazy caching. ACM Trans. Program. Lang. Syst.

15, l(Jan.), 182-205.

AHAMAD, M., HUTTO, P. AND JOHN, R. 1990. Implementing and programming causal distributed

shared memory, Tech. Rep. GIT-CC-90-49, Georgia Inst. of Technology, Atlanta, Dec.

ARCHIBALD, J., AND BAER, J.-L. 1986. Cache coherence protocols: Evaluation using a multipro-

cessor simulation model, ACM Trans. Comput. Syst. 4, 4 (Nov.), 273–298.

ATTNA, H. 1991. Implementing FIFO queues and stacks. In Proceedings of the 5th Interna-

tional Workshop on Distributed Algorithms. Lecture Notes in Computer Science, vol. 579,

Springer-Verlag, New York, pp. 80–94. (Also, Tech. Rep. 672, Dept. of Computer Science, The

Technion, Haifa, May).

ATTIYA, H., AND FRIEDMAN, R. 1992. A consistency condition for high-performance multiproces-

sors. In Proceedings of the 24th ACM Symposium on Theory of Computing (Victoria, B. C., May

4–6). ACM, New York, pp. 679–690. (Also, Tech. Rep. 719, Dept. of Computer Science, The

Technion, Haifa, June 1992).

ATTIYA, H., AND WELCH, J. L. 1991. Sequential consistency versus linearizability. In Proceed-

ings of the 3rd ACM Symposmm on Parallel Algorithms and Architectures (Hilton Head, S. C.,

July 21-24). ACM, New York, pp. 304-315.

ATTIYA, H., CHAUDHURI, S., FRIEDMAN, R.j AND WELCH, J. L. 1993. Non-sequential consistency

conditions for shared memory. In Proceedings of the 5th ACM Symposium on Parallel Algo-

rithms and Architectures (Velen, Germany, June 30–July 2). ACM, New York, pp. 24 1–250.

BENNETT, J., CARTER, J., AND ZWAENEPOEL, W. 1990. Munin: Distributed shared memory based

on type-specific memory coherence. In Proceedings of the 2nd ACM Symposium on Principles

and Practice of Parallel Processing (Seattle, Wash., Mar. 14– 16). ACM, New York, pp.

168-176.

BERNSTEIN, P., HADZILACOS, V., AND GOODMAN, H. 1987. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, Reading, Mass.

BIRMAN, K., AND JOSEPH, T. 1987. Reliable communication in the presence of failures. ACM

Trans. Comput. Syst. 5, 1 (Feb.), 47-7’6.

BISIANI, R., NOWATZYK, A., AND RAVISHANKAR, M. 1989. Coherent shared memory on a dis-

tributed memory machine. In Proceedings of the International Conference on Parallel Process-

ing. Pennsylvania State University, University Park, pp. 1-133–1-141.

BRANTLEY, W., MCAULIFFE, K., AND WEISS, J. 1985. RP3 processor-memory element. In Pro-

ceedings of the International Conference on Parallel Processing (Aug. 20–23). Pennsylvania

State University, University Park, pp. 782-789.

CENSIER, L. M., AND FEAUTRIER, P. 1978. A new solution to coherence problems in multicache

systems. IEEE Trans. Comput. C-27, 12 (Dec.), 1112–1118.

CHANG, J., AND MAXEMCHUK, N. F. 1984. Reliable broadcast protocols. ACM Trans. Comput.

Syst. 2, 3 (Aug.), 251-273.

COLLIER, W. W. 1984. Architectures for systems of parallel processes. Tech. Rep. 00.3253,

IBM, Poughkeepsie, N.Y., Jan.

DUBOIS, M., AND SCHEURICH, C. 1990. Memory access dependencies in shared-memory multi-

processors. IEEE Trans. Softw. Eng. 16, 6 (June), 660-673.

DUBOIS, M., SCHEURICH, C., AND BRIGGS, F. A. 1986a. Memory access buffering in multiproces-

sors. In Proceedings of the 13th International Symposium on Computer Architecture (June), pp.

434-442.

DUBOIS, M., SCHEURICH, C., AND BRIGGS, 1?. A. 1986b. Synchronization, coherence and event

ordering in multiprocessors. Computer 21, 2 (June), 9–21.

FRIEDMAN, R. 1993. Implementing hybrid consistency with high-level synchronization opera-

ACM Transactions on Computer Systems, Vol. 12, No. 2, May 1994

122 . H. Attiya and J. L. Welch

tions, Proceedings of the 12th ACM Symposium on Principles of Dlstrlbuted Computmg

(Ithaca, NY., Aug. 15-18). ACM, New York. pp. 229-240.

GARCIA-M• LINA, H., AND SPAUSTER, A. 1989. Message ordering in a multicast envmonment. In

proceedings of the International Conference on Distributed Computing Systems (Newport

Beach, Cahf., June 5-9). IEEE, Los Angeles, pp. 354-361.

GHARACHORLOO, K., LENOSKI, D., LAUDON, J., GIBBONS, P., GUPTA, A., AND HENNESSEY, J. 1990.

Memory consistency and event ordering in scalable shared-memory multiprocessors In Pro-

ceedings of the 17th International Symposwm on Computer Architecture (Seattle, Wash., May

28-31). IEEE, Los Angeles, pp. 15-26.

GIBBONS, P., MERRITT, M., AND GHARACHORLOO, K. 1991 Proving sequential consistency of

high-performance shared memories. In Proceedings of the 3rd ACM Symposmm on Parallel

Algorithms and Architectures (Hilton Head, S. C., July 21-24). ACM, New York, pp. 292-303.

GOTTLIEB, A. GRISHMAN, R., KRUSKAL. C. K., MCAULIFFE, K. P., RUDOLPH, L., AND SNIR, M. 1983.

The NYU ultracomputer—Designing a MIMD shared-memory parallel computer. IEEE Trans.

Comput. C-32 3 (Feb.) 175-189.

HENNESSY, J., AND PATTERSON, D. 1990. Computer Architecture: A Quanthztiue Approach.

Morgan Kaufmann, San Mateo, Calif.

HERLIHY, M. 1988. Wait-free implementations of concurrent objects. In Proceedings of the

ACM Symposium on PrmcLples of Dzstrzbuted Computmg (Toronto, Ont., Aug. 15-17). ACM,

New York, pp 276-290.

HERLIHY, M., AND WING, J. 1990. Linearizability: A correctness condition for concurrent ob-

jects. ACM Trans. Program, Lang. S.yst. 12, 3 (July), 463-492.

HuTTo, P., AND AHAMAD, M. 1989. Slow memory: Weakening consistency to enhance concur-

rency m distributed shared memories. Tech. Rep. GIT-ICS-89/39, Georgia Inst. of Technology,

Atlanta, Oct.

KOSA, M, 1994. Consistency conditions for concurrent shared objects: Upper and lower bounds.

Ph.D. dissertation, Dept. of Computer Science, Univ. of North Carolina, Chapel Hill. Feb.

LAMPORT, L. 1979. How to make a multiprocessor computer that correctly executes multipro-

cess programs. IEEE Trans. Comput. C-28, 9 (Sept.), 690–691.

LAMPORT, L. 1986. On interprocess communication. Parts I and II. DistrLb. Comput. 1, 2,

77-101.

LIPTON, R., AND SANDBERG, J. 1988. PRAM. A scalable shared memory. Tech, Rep. CS-TR-180-

88, Dept. of Computer Science, Princeton Umv., Princeton, N. J., Sept.

LtTNDELIUS, J., AND LYNCH, N. 1984. An upper and lower bound for clock synchronization. Inf.

Control 62, 2-3 (Aug/Sept.), 190-204.

MAVRONICOLAS, M., AND ROTH, D. 1992 Efficient, strong consistent implementations of shared

memory. In Proceedings of the 6th International Workshop on Distributed Algorithms. Lecture

Notes in Computer Science, vol. 647, Springer-Verlag, New York, pp 346-361

MIN, S.. AND BAER, J. 1989 A tlmestamp-based cache coherence scheme. In Proceedings of the

International Conference on Parallel Processing Pennsylvania State University, Umverslty

Park, pp. I-23-I-32.

MISRA, J. 1986. Axioms for memory access in asynchronous hardware systems, ACM Trans.

Program. Lang. Syst. 8, 1 (Jan.), 142-153.

PAPADIMITRIOU, C 1986 The Theory of Concurrency Control, Computer Science Press,

Rockville, Md.

RAMACHANDRAN, U., AHAMAD, J., AND KHALDH, M. Y. 1989. Coherence of distributed shared

memory: Unifying synchronization and data transfer In Proceedings of the International

Conference on Parallel Processing. Pennsylvania State University, University Park, pp.

11-160-11-169.

SCHIXJRICH, C,, AND DUBOIS, M. 1987. Correct memory operation of cache-based multiproces-

sors. In proceedings of the 14th International Symposmm on Computer Architecture (Pitts-

burgh, Pa., June 2-5) IEEE, Los Angeles, pp. 234-243.

Received August 1991; revised March 1993; accepted May 1993

ACM Transactions on Computer Systems, Vol 12, No 2, May 1994

