
6.851: Advanced Data Structures Spring 2012

Lecture 2 — 02/09, 2012

Prof. Erik Demaine Scribes: Yinzhan Xu (2017), Yuancheng Yu (2017)

Erek Speed (2012), Victor Jakubiuk (2012)

Aston Motes (2007), Kevin Wang (2007)

1 Overview

The main idea of persistent data structures is that when a change is made in the past, an entirely
new universe is obtained. A more science-fiction approach to time travel is that you can make a
change in the past and see its results not only in the current state of the data structure, but also
all the changes in between the past and now.

We maintain one timeline of updates and queries for a persistent data structure:

Usually, operations are appended at the end of the time line (present time). With retroactive data
structures we can do that in the past too.

2 Retroactivity

The following operations are supported by retroactive DS:

• Insert(t, update) - inserts operation “update” at time t

• Delete(t) - deletes the operation at time t

• Query(t, query) - queries the DS with a “query” at time t

Uppercase Insert indicates an operation on retroactive DS, lowercase update is the operation on
the actual DS.

You can think of time t as integers, but a better approach is to use an order-maintanance DS to
avoid using non-integers (in case you want to insert an operation between times t and t + 1), as
mentioned in the first lecture.

There are three types of retroactivity:

1

• Partial - Query always done at t =∞ (now)

• Full - Query at any time t (possibly in the past)

• Nonoblivious - Insert, Delete, Query at any time t, also if an operation modifies DS, we must
say which future queries are changed.

2.1 Easy case with commutativity and inversions

Assume the following hold:

• Commutative updates: x.y = y.x (x followed by y is the same as y followed by x); that is the
updates can be reordered ⇒ Insert(t, op) = Insert(now, op).

• Invertible updates: There exists an operation x−1, such that x.x−1 = ∅ ⇒ Delete(t, op) =
Insert(now, op−1)

2.1.1 Partial retroactivity

These two assumptions allow us to solve some retroactive problems easily, such as:

• hashing

• array with operation A[i]+ = ∆ (but no direct assignment)

2.2 Full retroactivity

First, lets define the search problem: maintain set S of objects, subject to insert, delete,
query(x, S).

Decomposable search problem [1980, 2007]: same as the search problem, with a restriction
that the query must satisfy: query(x,A ∪ B) = f(query(x,A),query(x,B)), for some function f
computed in O(1) (sets A and B may overlap). Examples of problems with such a function include:

• Dynamic nearest neighbor

• Successor on a line

• Point location

Claim 1. Full Retroactivity for decomposable search problems (with commutativity and inversions)
can be done in O(lgm) factor overhead both in time and space (where m is the number of operations)
using segment tree [1980, Bentley and Saxe [6]]

We want to build a balanced search tree on time (leaves represent time). Each interval note T is
associated with an interval of time [aT , bT] (the set of its descendant leaves). On the other hand,
every element “lives” in the data structure on the interval of time, corresponding to its insertion

2

Figure 1: Segment Tree

and deletion. If the the element appear in the time interval [L,R], then it appears in a node T
if and only if [aT , bT] ⊆ [L,R] and none of T ’s descendants’ interval belongs to [L,R]. It can be
proved that each element appears in lg n nodes.

To query on this tree at time t, we want to know what elements are present at time t. We can
simply find the leaf corresponding to time t, and check all the ancestors of the leaf. Because the
query is decomposable, we can look at lg n different ancestors and combine the results (using the
function f).

2.3 General case of full retroactivity

Roll back method:

• write down a (linear) chain of operations and queries

• change r time units in the past with factor O(r) overhead. That’s the best we can do in
general.

Lower bound: Ω(r) overhead necessary.

Proof: Data Structure maintains 2 values (registers): X and Y , initially ∅. The following operations
are supported: X = x, Y + = ∆, Y = X.Y , query ’Y ?’. Perform the following operations (Cramer’s

3

rule):
Y + = an, X = X.Y, Y + = an−1, X = X.Y, . . . , Y + = a0

which is equivalent to computing

Y = anX
n + an−1X

n−1 + ... + a0

Now, execute Insert(t = 0, X = x), which changes where the polynomial is evaluated. This cannot
be done faster than re-evaluating the polynomial. In history-independent algebraic decision tree,
for any field, independent of pre-processing of the coefficients, need Ω(n) field operations (result
from 2001), where n is the degree of the polynomial.

2.4 Cell-probe Lower Bound

The idea of cell-probe lower bounding is to consider the number of integers (words) in memory do
you need to read to solve your problem. This immediately gives a lower bound on running time.

Claim: The lower bound in cell probe model is Ω(
√

r
lg r).

OPEN problem: Ω(r).

Proof of the lower bound claim: Our DS maintains n words (integers of w ≥ lg n bits), and the
operations allowed for the DS is arithmetic operations. Because of this, we can build an operation
sequence of length Θ(n lg n) that computes the FFT of these n words. At the end, we query the
value of the FFT results. If we can retroactively change the initial words, we can do dynamic FFT.
However, changing one input requires Ω(

√
n) cell probes in dynamic FFT. Thus, we go back for

r = Θ(n lg n) time, and the overhead is Ω
(√

r
lg r

)
= Ω(

√
n).

2.5 Priority Queues

Now, let us move onto some more positive results. Priority queues represent a DS where retroactive
operations potentially create chain reactions but we have still obtained some nice results for. The
main operations are insert and delete-min which we would like to retroactively Insert and Delete.

Claim 2. It is possible to implement a partially retroactive priority queue with only O(lg n) overhead
per partially retroactive operation.

Because of the presence of delete-min, the set of operations on priority queues is non-commutative.
The order of updates now clearly matters, and Inserting a delete-min retroactively has the poten-
tial to cause a chain reaction which changes everything that comes afterward. Partially retroactive
priority queues are described in a paper by Demaine, Iacono, and Langerman [1].

To develop an intuition for how our DS changes given a retroactive operation, it is helpful to plot
it on a two dimensional plane. The x-axis represents time and y-axis represents key value. Every
insert(t, k) operation creates a horizontal ray that starts at point (t, k) and shoots to the right (See
Fig. 2).

4

Figure 2: Graph of priority queue featuring only a set of inserts

Every delete-min() operation creates a vertical ray that starts at (t,−∞) and shoots upwards,
stopping at the horizontal ray of the element it deletes. Thus, the horizontal ray becomes a line
segment with end points (t, k) and (tk, k), where tk is the time of key k’s deletion.

This combinations of inserts and deletes creates a graph of nonintersecting upside down “L” shapes,
where each L corresponds to an insert and the delete-min() that deletes it. Elements which are
never deleted remain rightward rays. Figure 3 demonstrates this by adding a few delete-mins to
our previous graph of only inserts.

Figure 3: Adding del-min() operations leads to these upside down “L” shapes.

The rest of the discussion will focus on Insert(t,“insert(k)”). It should be easy enough to convince
yourself that Delete(t,“delete-min”) has equivalent analysis if you think about Delete as inserting
the deleted element at the time of deletion.

5

Figure 4: An L view representation of a priority queue with a more complicated set of updates

Consider the priority queue represented by figure 4. It’s similar to the previous ones seen but with
more inserts and deletes to better illustrate the chain-reactions of retroactive operations. Figure
5 shows what happens when elements are retroactively inserted. The retroactive operations and
their chain reactions are shown in red. The cascading changes add up fast.

However, since we’re only requiring partial retroactivity we only need to determine what element
Insert(t,“insert(k)”) inserts into Qnow where Qnow is the priority queue at the present time.
Naively, it is easy to see that the element inserted at Qnow is: max {k, k′ | k′ deleted at time ≥ t}.
That is, the element that makes it to the “end” is the biggest element that was previously deleted
(ie. the end of the chain-reaction shown in Figure 3) or simply k if it is bigger than those (ie. the
insert caused no chain reactions).

Problem: Maintaining “deleted” elements is hard. It requires us to maintain the various chain-
reactions which isn’t efficient. Instead, we would like to simply keep track of inserts. Such a
transformation is possible as long as we define the new concept of “bridges”.

Definition 3. We define time t′ to be a bridge if Qt′ ⊆ Qnow.

This simply means that all of the elements present at a bridge t′ are also present at tnow. You can
think of bridges as separating the chaotic chain-reactions that happen during retroactive operations
as seen in figure 6.

If t′ is the bridge preceding time t, then
max {k′ | k′ deleted at time ≥ t} = max {k′ /∈ Qnow | k′ inserted at time ≥ t′}

We need two directions to prove this equality:

1. argmax {k′ /∈ Qnow | k′ inserted at time ≥ t′} ∈ {k′ deleted at time ≥ t}. If the maximum
value inserted after t′ is deleted before t, then the moment when this max value is deleted
will form a bridge. This contradicts to the assumption that t′ is the preceding bridge.

6

Figure 5: Retroactive inserts start at red dots and cause subsequent delete-min operations to effect different
elements as shown.

2. argmax {k′ | k′ deleted at time ≥ t} ∈ {k′ /∈ Qnow | k′ inserted at time ≥ t′}. This direction
is more clear, since all elements deleted after time t should belong to the set on the right
hand side.

With that transformation, we only need to maintain three data structures which will allow us to
perform partially retroactive operations with only O(lg n) overhead.

• We will store Qnow as a balanced BST. It will be changed once per update.

• We will store a balanced BST where the leaves equal insertions, ordered by time, and aug-
mented with ∀ node x : max {k′ /∈ Qnow | k′ inserted in x’s subtree}.

• Finally, we will store a balanced BST where the leaves store all updates, ordered by time,
and augmented by the following:


0 for inserts with k ∈ Qnow

+1 for other inserts, k /∈ Qnow

-1 for delete-mins

as well as subtree sums.

Now, we have to uses these data structures to execute our Insert. This can be done in O(lg n)
with the following steps.

• First, for an Insert at time t we must find the preceding bridge at time t′. Using our BBST of
all updates, we know that a bridge is a time(leaf) at which has a prefix of updates summing

7

Figure 6: Bridges have been inserted as green wavy lines. Notice how they only cross elements present to
the end of visible time.

to 0 (with respect to the augmentation). This is possible in O(lg n) time due to the stored
subtree sums. In brief, traverse the tree to find t, calculating the prefix sum as you descend.
If t has a prefix sum of 0 then we’re done. Otherwise, walk back up the tree to find the
preceding update with a prefix sum of 0.

• Next, in our BBST of insertions we descend to t′ and work back up the tree looking for the
maximum node not already in Qnow. Because of the augmentation we store, this can be done
in O(lg n) time.

• Finally, there are a collection of steps related to updating the data structures once we make
our update, but given our data structures it should be easy to convince yourself that it can
be done in O(lg n) time.

2.6 Other Structures

8

Abstract
Data Type

Partially
Retroactive

Fully
Retroactive

comments

queue O(1) O(lgm)

deque O(lgm) O(lgm)

union-find
(incremental
connectivity)

O(lgm) O(lgm)

priority-queue O(lgm)
O(lg2 n) amortized update

O(lg2 n lg lgn) query

Full retroactivity of priority queue
has been solved in [7], by a technique called

hierarchical checkpointing.
This paper was a result of open problem

solving sessions in 6.851, 2012.

successor O(lgm) O(lgm)

This was actually the motivating problem
for retroactivity. O(lgm) partial

because it’s a search problem.
O(lg2m) full because it’s also decomposable.
However, Giora and Kaplan gave us a better

solution of O(lgm) [3]!
This new algorithm uses many data structures

we’ll learn about later; including
fractional cascading (L3)

and vam Emde Boas (L11).

2.7 Nonoblivious Retroactivity

Nonoblivious retroactivity was introduced in a paper by Acar, Blelloch, and Tangwongsan to answer
the question, “What about my queries? [4]” Usually, when we use a data structure algorithmically
(e.g. priority queue in Dijkstra) the updates we perform depend on the results of the queries.

To solve this problem we can simply add queries to our time line (fig. 7).

Figure 7: Time line of updates and queries.

The notion of dependence depends upon the user, but we still want to do something reasonable.
Now, when we make a retroactive update, we want our DS to tell us the location of the first query
which changed as a result (e.g. the first error). Then we only have to re-run the algorithm from
that first erroneous query. Our assumption is that the algorithm does this by Deleteing each wrong
update and re-Inserting the proper update in a strict left to right order such that each update is
lower on the time-line than all errors.

After fixing each error, we can go back to using our retroactive DS in the usual way with no
restrictions.

9

For instance, In fig 8, the original value for two query-min queries should be 2 and 3 respectively.
However, if we insert 2.5 at the very beginning of the time line, the output for these queries should
be 2 and 2.5. The idea of nonoblivious retroactivity is to jump to time 6 directly and fix errors
happening after time 6.

Figure 8: Time line of updates and queries for priority queue.

Priority-Queues: Our priority queues will support insert, delete, and min in O(lgm) time per
operation.

Because we have retroactive queries now, we separate the query and updates into different oper-
ations. Our matching retroactive queries will be Insert, Deleate, and Min. We will visualize our
data structure using a similar 2D plane as before as seen in figure 9.

Figure 9: 2D representation of DS. Inserting an insert leads to crossings as shown. Inserting a delete
leads to floating errors as shown.

If we Insert an insert as shown in fig 9 then we get errors at each crossing. In our DS we will keep
the ‘incorrect’ picture, but keep track of the errors. We will tell the algorithm where the first error
(crossing) is and it will potentially Delete the query and re-Insert the operation thus getting the
correct result.

However, we don’t jump to the next error after this is done. Our assumption is that the algorithm
will, based on the new query, do various updates which may even delete the new element before
any further crossings.

10

Deleting a deletion is similar to Inserting an insertion as they both cause crossing errors.

The other two cases are Deleting an insertion and Inserting a deletion which cause floating errors.
These are situations where queries return ‘floating’ values because they refer to a segment which is
no longer there.

Both crossing and floating errors can be seen in figure 9.

We maintain the following two details

• First, we maintain the lowest leftmost crossing. This is equivalent to the leftmost lowest
crossing. This is because of the assumption that each update is earlier on the time-line than
all errors.

• Next, we maintain the left most floating error on each row separately.

Example: Insert(t, “min”). When adding a new query what is the first ray that I hit. This
only involves the horizontal segments which are being inserted and deleting. This problem is called
upward ray shooting among dynamic segments. We can solve it in O(lgm) per operation. This
turns out to be the same as the fully retroactive successor problem mentioned earlier which was
proved to be O(lgm) in [3].

The other cases are similar but you also need to use rightward ray shooting.

References

[1] Erik D. Demaine, John Iacono, Stefan Langerman: Retroactive data structures. SODA 2004:
281-290

[2] Erik D. Demaine, John Iacono, Stefan Langerman: Retroactive data structures. ACM Trans-
actions on Algorithms 3(2): (2007)

[3] Yoav Giora, Haim Kaplan: Optimal dynamic vertical ray shooting in rectilinear planar subdi-
visions ACM Transactions on Algorithms 5(3) (2009)

[4] Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan: Kinetic 3D convex hulls via self-
adjusting computation. Symposium on Computational Geometry 2007: 129-130

[5] Gudmund Skovbjerg Frandsen, Gudmund Skovbjerg Frandsen, Peter Bro Miltersen: Lower
Bounds for Dynamic Algebraic Problems. Information and Computation 171(2): 333-349
(2001)

[6] Jon Louis Bentley, James B. Saxe: Decomposable Searching Problems I: Static-to-Dynamic
Transformation. J. Algorithms 1(4): 301-358 (1980)

[7] Demaine, Erik D., Tim Kaler, Quanquan Liu, Aaron Sidford, and Adam Yedidia: Polylogarith-
mic Fully Retroactive Priority Queues via Hierarchical Checkpointing. Workshop on Algorithms
and Data Structures, pp. 263-275. Springer, Cham (2015).

11

