
6.851 Advanced Data Structures (Spring’14)

Prof. Erik Demaine TAs: Timothy Kaler, Aaron Sidford

Problem 2 Sample solution

This problem came from part 1 of the papers by Chazelle and Guibas on fractional cascading
[1].

Let S denote the distinct ai and bi values of the intervals, i.e. S = {ai ∣ i ∈ [n]} ∪ {bi ∣ i ∈ [n]}.
Create a balanced binary search tree where the keys are S. For each node d in the binary search
tree let dk ∈ S denote its key. Assign each interval [ai, bi] to the least common ancestor of the nodes
for ai and bi in the binary search tree. Note that interval [ai, bi] is assigned to node d if and only
if ai ≤ dk ≤ bi.

For every node d in the binary search tree create two sorted lists, dA and dB. Let dA contain
the intervals [ai, bi] assigned to d sorted by ai and let dB contain the intervals [ai, bi] assigned to
d sorted by b. Note that if some x satisfies x ∈ [ai, bi] then [ai, bi] is assigned to one of the nodes
on the path from the root to either the successor or the predecessor of x in the binary search tree.
Furthermore if for some node d we have x ≤ dk then if interval [ai, bi] is in dA and ai ≤ x then
x ∈ [ai, bi] (since x ≤ dk ≤ bi for every [ai, bi] ∈ A). Similarly if x ≥ dk then if [ai, bi] in dB and bi ≥ x
then x ∈ [ai, bi] (since x ≥ dk ≥ ai for every [ai, bi] ∈ dB).

From the reasoning in the preceding paragraph we see that to compute stab(x) it suffices to
find the successor and predecessor of x in the binary search tree, follow the paths to the root for
these two nodes, and for each node on the path find the position of x in dA and dB, and then walk
these lists depending on whether x ≤ dk or x ≥ dk. Since the balanced binary search tree has at most
O(n) elements we see that its height is at most O(logn) and therefore we look up x in O(logn)
lists connected in a graph of degree at most 3 (since a binary search tree is a graph of degree 3).
Therefore, using fractional cascading we can find these elements in O(logn+ logn) = O(logn) time
(since each list has at most O(logn) elements).

Putting this all together, we see that it takes O(n logn) time to create the binary search tree
and all the lists. Furthermore, since each interval is assigned to exactly one node, the total size of
all the dA and dB lists is O(n). Therefore, using fractional cascading to link all these lists takes
O(n) time and O(n) space. Given a query, stab(x) we can then find the paths for the successor
and predecessor of x in O(logn) time since the binary search tree is balanced and using fractional
cascading we can find x in each dA and db lists in O(logn) time. Once we find x in each of these
O(logn) lists we can output the results of stab(x) in an additional O(logn+k) time by just walking
each of the O(logn) lists depending on whether x ≤ dk or x ≥ dk. Therefore, this data structure is
as desired.

Another Solution: Some students noted that for an interval [ai, bi] it is the case that x ∈

[ai, bi] if an only if the two dimensional point point p = (ai,−bi) satisfies p ∈ (−∞, x) × (−∞, x) and
therefore you could use the result we saw in Lecture 5. This is a valid answer as well and no points
were deducted if you did this; though we may have preferred you figure out how to use fractional
cascading directly ,.



References

[1] B. Chazelle and L. J. Guibas. Fractional cascading: I. a data structuring technique. Algorith-
mica, 1:133–162, 1986.


