
6.851 Advanced Data Structures (Spring’14)

Prof. Erik Demaine TAs: Timothy Kaler, Aaron Sidford

Problem 1 Sample solution

This solution is modeled off Section 5.2 in [1].
Before describing how to implement the retroactive data structure, we will briefly sketch an implemen-

tation of a non-retroactive dynamic read-only array with the required operations. This data structure can
be thought of as a deque with an extra operation get(i) to obtain its ith element.

Suppose that you know the maximum size of the read-only array is m. Maintain an array A of size 2m+1
indexed from −m,−m + 1,. . . , m with the 0th element omitted. In addition, maintain two counters L and
R that maintain the net number of elements added to the left and right end of the array. The operation
addR(x) sets A[R + 1] = x and increments R, and remR(x) sets A[R] = 0 and decrements R. addL and remL

are implemented analogously, but write to the left half of A, e.g. addL writes to A[−L − 1]. The query
operations can be implemented using A, R, and L: the operation size() returns R + L and get(i) returns
A[i− L].1

To implement a fully retroactive version of this data structure, rather than maintaining this array ex-
plicitly we maintain a balanced binary search tree where the leaves are the update operations addR, addL,
remR, and remL ordered by time. For each leaf node we associate numbers UR and LR such that UR is 1 for
addR, UR is −1 for remR, UL is 1 for addL, and UL is −1 for remL. The numbers UR and LR are zero for all
other nodes.

The value of L at time t is the sum of all UL values for update operations that occurred at time < t and
R is the sum of all UR values for update operations that occurred at time < t. The value of A[j] at time t
is simply the result one of the two last update operations when −L− 1 or R + 1 was j.

Therefore, it suffices to be able to compute the value of L and R at every time t and to find the last
update operation when L or R was some specified value. For this purpose, we augment each node in the
balanced binary search tree with six values, the sum of the UL and UR values in its subtree and the nodes
with the smallest and largest L and R values in its subtree. We maintain these values in O(logm) time for
each Insert or Delete by updating the modified nodes’ ancestors.

• Insert(t,update(x)) where update ∈ {addL(x), addR(x), remL, remR}: Insert a new leaf node into the
binary search tree with the appropriate UL and UR values, updating the auxiliary information as
needed.

• Delete(t,update(x)) where update ∈ {addL(x), addR(x), remL, remR}: Delete the corresponding leaf
node from the binary search tree, updating the auxiliary information as needed.

• Query(t, size): Find the leaf node corresponding to the last update performed before time t. Compute
L and R for t by adding the subtree sums of UL and UR of the left children of the ancestors of this
node. Return R + L.

• Query(t, get(i)): Compute the values of L and R as in the previous bullet and check that i < R + L.
Next we compute the value of A[j] for j = i−L. To do this we find the leaf node corresponding to the
last update operation that occurred before time t. We then perform two walks up and down the tree
to find the last update operations that occurred before time t when −L− 1 = j or R+ 1 = j. At least
one of these operations must be a addL or a addR and we return the one that was performed last.

Using a balanced binary search tree all these operations can be performed in O(logm) time.

References

[1] E. D. Demaine, J. Iacono, and S. Langerman. Retroactive data structures. ACM Transactions on
Algorithms, 3(2), 2007.

1Note that few small tweaks are required to adjust indices by 1 to account for the unused 0th array index.


