
6.851: Advanced Data Structures Spring 2010

Lecture 23 — May 4, 2010

Prof. Erik Demaine Scribe: Mart́ı Boĺıvar, heavily edited by Sarah Eisenstat

1 Overview

In the last lecture we introduced the concept of implicit, succinct, and compact data structures, and
gave examples for succinct binary tries, as well as showing the equivalence of binary tries, rooted
ordered trees, and balanced parenthesis expressions. Succinct data structures were introduced
which solve the rank and select problems.

In this lecture we introduce compact data structures for suffix arrays and suffix trees. Recall the
problem that we are trying to solve. Given a text T over the alphabet Σ, we wish to preprocess
T to create a data structure. We then want to be able to use this data structure to search for a
pattern P , also over Σ.

A suffix array is an array containing all of the suffixes of T in lexicographic order. In the interests
of space, each entry in the suffix array stores an index in T , the start of the suffix in question. To
find a pattern P in the suffix array, we perform binary search on all suffixes, which gives us all of
the positions of P in T .

2 Survey

In this section, we give a brief survey of results for compact suffix arrays. Recall that a compact
data structure uses O(OPT) bits, where OPT is the information-theoretic optimum. For a suffix
array, we need |T | lg |Σ| bits just to store the text T .

Grossi and Vitter 2000 [3] Suffix array in(
1
ε

+ O(1)
)
|T | lg |Σ|

bits, with query time

O

(
|P |

logε
|Σ| |T |

+ |output| · logε
|Σ| |T |

)
We will follow this paper fairly closely in our discussion today.

Ferragina and Manzini 2000 [1] The space required is

5Hk(T)|T |+ o(|T |) + O
(
|T |ε · |Σ|O(|Σ|)

)
bits, for all fixed values of k. Hk(T) is the kth-order empirical entropy, or the regular entropy
conditioned on knowing the previous k characters. More formally:

Hk(T) =
∑
|w|=k

Pr{w occurs} ·H0(characters following an occurrence of w in T).

1

Note that because we’re calculating this in the empirical case,

Pr{w occurs} =
of occurrences of w

|T |
.

For this data structure, query time is

O(|P |+ |output| · lgε |T |).

Sadakane 2003 [5] Space in bits is

1
ε
H0(T)|T |+ O(|T | lg lg |Σ|+ |Σ| lg |Σ|),

and query time is
O(|P | lg |T |+ |output| lgε |T |).

Note that this bound is more like a suffix array, due to the multiplicative log factor.

Grossi, Gupta, Vitter 2003 [2] This is the only known succinct result. Space in bits is

Hk(T) · |T |+ O

(
|T | lg |Σ| · lg lg |T |

lg |T |

)
,

and query time is
O(|P | lg |Σ|+ lgo(1) |T |).

3 Compressed suffix arrays

For the rest of these notes, we will assume that the alphabet is binary (in other words, that |Σ| = 2).
In this section, we will cover a simplified (and less space-efficient) data structure, which we will
adapt in the next section for the compact data structure.

3.1 Top-Down

The data structure uses ideas similar to those in the DC3 algorithm presented in Lecture 7. For this
data structure, however, we will group the characters in our string into pairs rather than triples. If
we were starting from the original suffix array, the definitions would be as follows:

start The initial text T0 = T , the initial size n0 = n, and the initial suffix array SA0 = SA (the
suffix array of T). Recall that SA[i] is the index in T where the ith suffix begins.

step We define the recursive texts to be:

Tk+1 =
〈
(Tk[2i], Tk[2i + 1]) for i = 0, 1, . . . , n

2

〉
.

The recursive sizes are:
nk+1 = nk

2 = n
2k .

And the recursive suffix array is:

SAk+1 = 1
2 · (extract even entries of SAk)

where “even suffixes” are defined to be suffixes whose index in Tk are even.

2

Clearly, it is fairly easy to calculate SAk+1 from SAk, and since SA0 is known, this means that we
can go top-down without much difficulty. However, in order to make this data structure work, we
need to go bottom-up.

3.2 Bottom-Up

We need a way to represent SAk using SAk+1. To do so, we define the following functions:

is-evenk(i) This tells us whether SAk[i] is an even suffix. More formally:

is-evenk(i) =
{

1 if SAk[i] is even
0 otherwise

even-succk(i) The “even successor” of i, defined as i if SAk[i] is even, and otherwise equal to the
j such that SAk[i] = SAk[j]− 1.

even-rankk(i) The “even rank” of i, or the number of even suffixes preceding the ith suffix. Note
that if is-evenk(·) is stored as a bit vector, then this is equivalent to rank1(i) in that vector.

Given these definitions, we can write:

SAk[i] = 2 · SAk+1[even-rankk(even-succk(i))]− (1− is-evenk(i))

If the predicate is-evenk(i) is true, this is equivalent to saying

SAk[i] = 2 · SAk+1[even-rankk(i)],

which basically means that we’re looking up the correct value in the array SAk+1. If is-evenk(i) is
false, then this is equivalent to performing the same action on i’s “even successor” — which is the
index into SAk of the suffix starting one position after SAk[i] — and then subtracting 1 to get the
correct starting position in the text Tk.

If we can perform the above operations in constant time, then we can reduce a query on SAk to
a query on SAk+1 in constant time. Hence, a query on SA0 will take O(`) time if our maximum
recursion depth is `. If we set ` = lg lg n, we will reduce the size of the text to n` = n/ lg n. We
can then use a normal suffix array, which will use O(n` lg n`) = O(n) bits of space, and thus be
compressed.

3.3 Construction

We can store is-evenk(i) as a bit vector of size nk. Because nk decreases by a factor of two with
each level, this takes a total of O(n) space. Then we can implement even-rankk(i) with the rank
from last lecture on our bit vector, requiring o(nk) space per level, for a total of O(n) space.

Doing even-succk(i) is trivial in the case that SAk[i] is even. If we had as much space as we wanted,
we could just store the answer for odd values of SAk[i]. Unfortunately, we can’t actually write them
down, because that would require nk/2 items of lg nk bits each.

3

Whatever data structure we use, let’s order the values of j by i; that is, if the answers are stored
in array called answers, then we would have even-succk(i) = answers[i − even-rankk(i)], because
i − even-rankk(i) is the index of i among odd suffixes. This ordering is equivalent to ordering
by the suffix in the suffix array, or Tk[SAk[i] :]. This, in turn, is equivalent to ordering by
(Tk[SAk[i]], Tk[SAk[i] + 1 :]) = (Tk[SAk[i]], Tk[SAk[even-succk(i)] :]). Further, this is equivalent
to ordering by (Tk[SAk[i]], even-succk(i)).

So to store even-succk(i), we actually store items of the form (Tk[SAk[i]], even-succk(i)). Each
such item requires (2k + lg nk) bits, because the characters in Tk are of length 2k. The data in
these arrays is in sorted order. So we can store the leading lg nk bits of each value vi using unary
differential encoding:

0lead(v1)10lead(v2)−lead(v1)10lead(v3)−lead(v2)1 . . .

Where lead(vi) is the value of the leading lg nk bits of vi. There will then be nk/2 ones and at
most 2lg nk = nk zeros, and hence at most (3/2)nk bits total used for this encoding. Again by the
geometric nature of successive values of nk, this will require O(n) bits total, so the overall data
structure is still compressed.

Note that if we maintain rank and select data structures, we can efficiently compute lead(vi) =
select1(i)− i.

The remaining 2k bits can be stored in an array. The space required for such an array on level k is:

2k · nk

2
= 2k n

2k+1
=

n

2
.

Unfortunately, when we sum up this space requirement for all ` = lg lg n levels, we need a total of
O(n lg lg n) bits. So this is not compact.

4 Compact suffix arrays

To reduce the space requirements of the data structure, we want to store fewer levels of recursion.
We choose to store (1 + 1/ε) levels of recursion, one for the following values of k:

0, ε`, 2ε`, ..., ` = lg lg n.

In other words, instead of pairing two letters together with each recursive step, we are now clustering
2ε` letters in a single step. We now need to be able to jump ε` levels at once.

4.1 Level jumping

In order to find a formula for SAkε` in terms of SA(k+1)ε`, we first redefine the word “even.” Now
a suffix SAkε`[i] is “even” if its index in Tkε` is divisible by 2ε`. This changes the definition of
even-rankkε`(i) in the obvious way. However, we will not change the definition of even-succkε`(i):
it should still return the value j such that SAkε`[i] = SAkε`[j]− 1. It should do this for all “even”
values of SAkε`[i].

With these modified definitions, we can compute SAkε`[i] as follows:

4

• Calculate the even successor repeatedly until index j is at the next level down — in other
words, so that SAkε`[j] is divisible by 2ε`.

• Recursively compute SA(k+1)ε`[even-rankkε`(j)].

• Multiply by 2ε` (the number of letters we clustered together) and then subtract the number
of calls to successor in the first step.

This process works for much the same reason that it does in the compressed suffix array. We first
calculate the j such that SAkε`[j] is divisible by 2ε` and SAkε`[j]−m = SAkε`[i], where 0 ≤ m < 2ε`.
The recursive computation gives us the index in T(k+1)ε` of the suffix corresponding to SAkε`[j].
We can compute the true value of SAkε`[j] if we multiply the result of the recursive computation
by 2ε`. We then subtract the value m to get SAkε`[i].

4.2 Analysis

We may have to look up the even successor of an index 2ε` times before getting the value we can
recur on. Therefore, the total search time is O(2ε` lg lg n) = O(lgε n lg lg n) = O(lgε′

n) for any
ε′ > ε.

We use the same unary differential encoding for successor as in the compressed construction, for a
total of 2nkε` + n + o(n) bits per level in total. We also must store the is-evenkε`(·) vectors and the
rank data structure, for a total of nkε` + o(n) per level. There are 1 + 1/ε levels in total. Hence,
the total space is something like (6 + 1/ε)n + o(n) bits, which is compact.

There are some optimizations we can perform to improve the space. We don’t have to store the
data for even-succ0(·), because it’s the top level, which means that the total space required storing
even successor information is:

O
(n

2ε`

)
= O

(
n

lgε n

)
= o(n).

If we store the is-evenkε`(·) vectors as succinct dictionaries (because they are, after all, fairly sparse),
then the space required is:

lg
(

nkε`

n(k+1)ε`

)
≈ n(k+1)ε` lg

nkε`

n(k+1)ε`
= n(k+1)ε` lg 2ε` =

nkε` · ε`
2ε`

=
nkε` · ε lg lg n

lgε n
= o(nkε`)

Hence, the total space is o(n). This gives us a total space of (1 + 1/ε)n + o(n) bits.

Open problem: Is it possible to achieve o(lgε n) in linear space?

5 Suffix trees [4]

5.1 Construction

In Lecture 22, we saw how to store a binary trie with 2n + 1 nodes on 4n + o(n) bits. We can
use this to store the structure of the compressed suffix tree. Unfortunately, we don’t have enough

5

space to store the edge lengths or the letter depth, which would allow us to traverse the tree with
no further effort.

To search for a pattern P in the tree, we must calculate the letter depth as we go along. Say that
we know the letter depth of the current node x. To descend to its child y, we need to compute the
difference in letter depths, or the length in letters of the edge between them.

The letter depth of y is equivalent to the length of the substring shared by the leftmost descendant
of y and the rightmost descendant of y. Let ` be the leftmost descendant, and let r be the rightmost
descendant. If we know the index in the suffix array of both ` and r, then we can use the suffix
array to find their indices in the text. Because ` and r are both descendants of x, we know that
they both match for letter-depth(x) characters. So we can skip the first letter-depth(x) characters
of both, and start comparing the characters of `, r, and P . If P differs from ` and r before they
differ from each other, we know that there are no suffixes matching P in the tree, and we can stop
the whole process. Otherwise, ` and r will differ from each other at some point, which will give us
the letter depth of y. Note that the total number of letter comparisons we perform is O(|P |), for
the entire process of searching the tree.

5.2 Necessary binary trie operations

To find `, r, and their indices into the suffix array, note that in the balanced parentheses represen-
tation of the trie, each leaf is the string “())”.

leaf-rank(here) The number of leaves to the left of the node which is at the given position in the
string of balanced parentheses. Can be computed by getting rank())(()n)

leaf-select(i) The position in the balanced parentheses string of the ith leaf. Can be computed
by calculating select())(i).

leaf-count(here) The number of leaves in the subtree of the node at the given position in the
string of balanced parens. Can be computed using the formula:

rank())(matching) of parent)− rank())(here).

leftmost-leaf(here) The position in the string of the leftmost leaf of the node at the given position.
Given by the formula:

leaf-select(leaf-rank(here) + 1).

rightmost-leaf(here) The position in the string of the rightmost leaf of the node at the given
position. Given by the formula:

leaf-select(leaf-rank(matching) of parent− 1)).

Hence, we can use a rank and select data structure on the string of balanced parentheses to find
the first and last leaves in the part of the string representing the subtree rooted at y. We can
then calculate the rank of those leaves to determine the index into the suffix array. Hence, we can
perform the search described in the previous paragraph at a cost of O(1) operations per node.

6

5.3 Analysis

The total time required to search for the pattern P is

O(|P |+ |output|) ·O(cost of suffix array lookup).

5.4 Improvement

It is also possible to improve this, creating a succinct suffix tree given a suffix array. In the above
algorithm, storing the suffix tree takes too much space to achieve succinctness. Instead, we store
the above compact suffix tree on every bth entry in the suffix array, which gives us an extra storage
cost of O(n/b).

First, modify the tree to return something reasonable if P doesn’t match any of the items in the
tree, such as returning the predecessor of P in the set of leaves. If we consider the suffixes to be
divided into blocks of size b, then when we query on P , the suffix tree will give us an interval of
block dividers such that any suffix matching P must lie in a block touching one of those dividers.
This gives us a range of blocks in which to look for the true answer.

The rest of the algorithm was not covered in lecture, but is explained in [4] and in the handwritten
lecture notes.

References

[1] P. Ferragina and G. Manzini, Indexing Compressed Text, Journal of the ACM, Vol. 52 (2005),
552-581.

[2] R. Grossi, A. Gupta, J. S. Vitter, High-order entropy-compressed text indexes, SODA 2003:
841-850.

[3] R. Grossi and J. S. Vitter, Compressed suffix arrays and suffix trees with applications to text
indexing and string matching, Thirty-Second Annual ACM Symposium on Theory of Comput-
ing, vol. STOC,pp. 397-, 2000.

[4] J. I. Munro, V. Raman, and S. S. Rao, Space Efficient Suffix Trees, Journal of Algorithms,
39(2):205-222.

[5] K. Sadakane, New text indexing functionalities of the compressed suffix arrays. Journal of
Algorithms, 48(2): 294-313 (2003).

7

