
6.851: Advanced Data Structures Spring 2010

Lecture 21 — 27 April, 2010

Prof. Erik Demaine Scribe: Tom Morgan

1 From Last Lecture. . .

In the previous lecture, we discussed the External Memory and Cache Oblivious memory models.
We additionally discussed some substantial results from data structures under each model; the most
complex of these was the Cache Oblivious B-Tree. In that construction, we used the Ordered File
Maintenance (OFM) data structure as a black box to maintain an ordered array with O(log2N)
updates. Now we will fill in the details of the OFM.

2 Ordered File Maintenance [1] [2]

The OFM problem is to store N elements in an array of size O(N), in a specified order. Ad-
ditionally, the gaps between elements must be O(1) elements wide, so that scanning k elements
costs O(d kB e) memory transfers. The data structure must support deletion and insertion (between
two existing elements). These updates are accomplished by re-arranging a contiguous block of

O(log2N) elements using O(1) interleaved scans. Thus the cost in memory transfers is O(log
2N
B);

note that these bounds are amortized.

The OFM structure obtains its performance by guaranteeing that no part of the array becomes too
densely or too sparsely populated. When a density threshold is violated, rebalancing (uniformly
redistribute elements) occurs. To motivate the discussion, imagine that the array (size O(N)) is
split into pieces of size Θ(logN) each.

Now imagine a complete binary tree (depth: O(logN) − Θ(log logN) = O(logN)) over these
subsets. Each tree-node tracks the number of elements and the number of total array slots in its
range. Density of an interval is then defined as the ratio of the number of elements stored in that
interval to the number of total array slots in that interval.

2.1 Updates

To update element X,

• Update a leaf chunk of size Θ(logN) containing X.

• Walk up the tree to the first node within the density threshold.

• Uniformly redistribute the elements in this node’s interval.

The density threshold is depth-dependent. The depth is defined such that the tree root has depth
0, and tree leaves have depth h = Θ(logN). We require:

1

• density ≥ 1
2 −

1
4
d
h ∈ [14 ,

1
2] (not too sparse) item density ≤ 3

4 + 1
4
d
h ∈ [34 , 1] (not too dense)

Notice that the density constraints are highest at the shallowest node. Intuitively, saving work
(i.e., having tight constraints) at the deepest nodes gains relatively little performance because the
working sets are comparatively small.

Keep in mind that the BST is never physically constructed. It is only a conceptual tool useful
for understanding and analyzing the OFM structure. To perform the tree search operations, we
can instead examine the binary representation of the left/right edges of a “node” to determine
whether this node is a left/right child. Then the scan can proceed left/right accordingly; this is
the “interleaved scan.”

2.2 Analysis

Consider a node D at depth d and its lchild and rchild at depth d + 1; say node D is within
its threshold, so we need to rebalance its interval. Observe that post-balancing, all descendants
of node D will have the same density as node D. Since density constraints become stricter at
shallower depths, this means that D’s descendants will be (relatively) well-within their thresholds.
Specifically, the two children of D require around m

4h or Ω(m
logN) (where m is the size of the child’s

interval) for their densities to violate their thresholds. So we can charge the cost of rebalancing the
parent interval, which has size ≤ 2m, to those Ω(m

logN) updates. Each update is charged O(logN)
times each because there are only m

4 logN updates (until the child violates a threshold) but m charges
in the parent interval. Now we deal with the fact that we have only considered depth d and d+ 1.
Each leaf is below O(logN) ancestors, so each update may be charged at each tree level. This
makes for a total of O(log2N) (amortized) memory moves.

This analysis is an amortized result. It can be made worst-case[3], but we did not discuss it in
class. It also conjectured that Ωlog2N is an appropriate lower bound for this problem.

3 List Labeling

List Labeling is an easier problem than OFM. It involves maintaining explicit (e.g., integer) labels
in each node of a linked list. These labels should increase monotonically over the list. The data
structure needs to support insertion between two labels and deletion of a label. Depending on the
size of the label space, we are aware of a spread of time-bounds:

|Label Space| Best Update
Query Time

Comments

(1 + ε)N...N lgN O(lg2N) Use OFM (linear space).

N1+ε...NO(1) Θ(lgN) OFM method with thresholds at ≈ 1
αd ,

1 < α ≤ 2.

2N Θ(1) Simple: have N bits for N items, so insert
by bisecting intervals (may rebuild once
per N ops).

2

Figure 1: A cache-oblivious priority queue

3.1 List Ordered Maintenance

Here we need to maintain an ordered linked list subject to insertion and deletion. Additionally, it
should answer “ordering queries”: does node x come before node y? O(1) updates and queries are
possible using indirection [4].

Consider a “top” summary structure covering a set of “bottom” structures. The bottom structures
are each size Θ(logN). To perform the labeling, we can use the simple exponential label space list
labeling algorithm. The required label space is 2n = 2logN = N , which is affordable. The summary
structure is size O(N

logN); each element points to one of the bottom members. For this list, use the
Θ(logN) list labeling algorithm. The cost is O(1) amortized since it costs Θ(logN) per update,
but updates only happen once every Θ(logN) updates to the bottom members.

Then we can form an implicit label for every bottom member element in the form of (top label,
bottom label). This requires O(logN) bits to store, so we can compare two labels in O(1) time.
The key point here is that changing one top label updates numerous bottom labels simultaneously.
This is the reason we are able to obtain better performance than the optimal result quoted in the
above table. Lastly, worst-case bounds are also obtainable [4].

4 Cache-Oblivious Priority Queues

Our objective with the cache-oblivious priority queue is to support all operations withO(1
B logM/B

N
B)

amortized memory transfers per operation in the cache-oblivious model. The data structure is di-
vided up into Θ(log log n) levels of sizes N,N2/3, N4/9, ..., O(1). Each level consists of an up buffer,
and many down buffers which store elements moving up and down in the data structure as linked
lists. For a level of size X3/2, the up buffer is of size X3/2 and there are at most X1/2 down buffers.
Each down buffers has Θ(X) elements, except for the first one which may be smaller.

We maintain the following invariants on the order of the elements:

1. In a given level, all of the elements in the down buffers must be smaller than all of the elements
in the up buffer.

3

2. In a given level, the down buffers must be in increasing order - all elements in the ith down
buffer must be smaller than all of the elements in the (i+ 1)th down buffer.

3. The down buffers are ordered globally - all elements in a down buffer in a smaller level must
be smaller than all elements in any down buffer in a larger level.

4.1 Insertion

Insertion a new element is done in three steps:

1. Append the element to the up buffer at the smallest level.

2. If the new element is smaller than an element in a down buffer, swap it into the down buffers
as necessary.

3. If the up buffer overflows, perform a push operation on it.

4.2 Push

The objective of pushing is to empty out the up buffer at level X by moving all of its elements into
level X3/2. To do this, we first sort all of these elements, and then distribute them among the down
and up buffers in level X3/2. This distribution is performed by scanning through the buffers in
increasing order (first down buffers, then up buffer) and inserting our elements where they belong.
If one of the down buffers overflows we simply split it in half, and if this causes the number of down
buffers to grow too large, we move the last one into the up buffer. If up buffer overflows, we simply
perform a push on it.

4.3 Delete-min

The minimum element in the priority queue should always be in the first down buffer at the smallest
level, so we simply go there and remove it. However, this may cause the down buffers to under
flow, in which case we perform a pull operation.

4.4 Pull

Our goal here is to refill the down buffers at level X by bringing down the smallest X elements
from level X3/2. Once we get these elements, we will sort them together with the up buffer. We
will leave the largest elements in the up buffer (the same number of elements as were there before
the pull) and then split the remaining elements between the down buffers.

We recall that each of the down buffers at level X3/2 except for perhaps the first one should have
Θ(X) elements, so we simply sort the first two down buffers in level X3/2 and bring the smallest
X elements from them to be put into level X’s down buffers. However, if there are fewer than X
elements here, then we recursively pull X3/2 elements from level X9/4.

4

4.5 Analysis

We will first argue that ignoring recursion, the number of memory transfers during a push or pull
operation on level X3/2 is O(XB logM/B

X
B). First we assume that any level of size less than M will

be entirely in cache, so those are free. In the remaining cases, we use the tall cache assumption to
say X3/2 > M ≥ B2, thus X > B4/3.

First consider a push at level X3/2. Sorting costs O(XB logM/B
X
B), and distribution costs O(XB +

X1/2). X
B is the cost for scanning, and X1/2 is the cost for loading the first part of each down

buffer. If X ≥ B2 then this distribution costs O(X/B) which is dwarfed by sorting. There is only
one level remaining in which B4/3 ≤ X ≤ B2 and for this level we will simply assume that our ideal
cache always holds on to1 line buffer down buffer, so we don’t have to pay the X1/2 start up cost.
We can do this because X ≤ B2 so by the tall cache assumption X1/2 ≤ B ≤ M/B. Therefore
sorting is always the dominant cost. The analysis for pulling is essentially identical.

Thus, X elements involved in pushing or pulling cost O(XB logM/B
X
B). One can prove that each

element can only be charged for a constant number of pushes and pulls per level. The intuition is ba-
sically that each element goes up and then down. Thus the cost per element is O(1

B

∑
X logM/B

X
B).

Since X grows doubly exponentially, the logM/B
X
B term grows exponentially. Therefore, the last

term, logM/B
N
B dominates the sum and we are left with O(1

B logM/B
N
B) per operation as desired.

References

[1] Alon Itai, Alan G. Konheim, and Michael Rodeh. A Sparse Table Implementation of Prior-
ity Queues. International Colloquium on Automata, Languages, and Programming (ICALP),
p417-432, 1981.

[2] M. A. Bender, R. Cole, E. Demaine, M. Farach-Colton, and J. Zito. Two Simplified Algorithms
for Maintaining Order in a List. Proceedings of the 10th European Symposium on Algorithms
(ESA), p152-164, 2002.

[3] D.E. Willard. A density control algorithm for doing insertions and deletions in a sequentially
ordered file in good worst-case time. In Information and Computation, 97(2), p150-204, April
1992.

[4] P. Dietz, and D. Sleator. Two algorithms for maintaining order in a list. In Annual ACM
Symposium on Theory of Computing (STOC), p365-372, 1987.

[5] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro. Cache-oblivious
priority queue and graph algorithm applications. In Proc. STOC ’02, pages 268–276, May
2002.

5

