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1 Overview

In the last lecture we covered static fusion tree. A data structure storering n w-bit integers that
supports predecessor and successor queries in O(logw n) time with O(n) space.

In this lecture we discuss lower bounds on the cell-probe complexity of the static predecessor
problem with constrained space. In particular, we use round elimination technique to prove the
preprocessor lower bound in communication model and that the min of van Emde Boas trees and
fusion trees is an optimal static predecessor data structure up to loglog factors.

2 Predecessor lower bound results

2.1 The problem

Given a set of n w-bit integers, the goal is to efficiently find predecessor of element x. Observe that
having O(2w) space one can precompute and store all the results to achieve constant query time,
we assume O(nO(1)) space for our data structures.

The results we are about to discuss are actually for an easier problem: colored predecessor. Each
element is colored red or blue. Given query on element x, the goal is to return the color of x’s
predecessor. Since we can solve colored predecessor problem using predecessor, gives a stronger
lower bound for our original problem.

2.2 Results

• Ajtai-Combinatorica 1988[1] –Proved the first superconstant bound, O(w); claimed that
∀w,∃n that gives Ω(

√
lgw) query time.

• Miltersen-STOC 1994[2] –Rephrased the same proof ideas in terms of communication com-
plexity: ∀w, ∃n that gives Ω(

√
lgw) query time; ∀n, ∃w that gives Ω( 3

√
lg n) query time.

• Miltersen,Nisan,Safra,Wigderson-STOC 1995[3]&JCSS 1998[4] –Introduced round elimina-
tion technique and used it to give a clean proof of the same lower bound.

• Beame,Fich-STOC 1999[5]&JCSS2002[6]&manusccript 1994 –Proved two strong bounds: ∀w,∃n
that gives Ω( lgw

lg lgw ) query time; ∀n,∃w that gives Ω(
√

lgn
lg lgn) query time. Also gave a static

data structure achieving O(min{ lgw
lg lgw ,

√
lgn

lg lgn)}, which shows that these bounds are optimal

if we insist on pure bound in n&w.
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• Xiao - Ph.D. thesis 1992 at U.C. San Diego[7] –Independently proved the same lower bound
earlier of Beame and Fich.

• Sen - CCC 2003[8]; Sen,Venkatesh-JCSS2008[9] –Gave a stronger version of the round elim-
ination lemma that we about to introduce in this lecture, which gives a cleaner proof of the
same bounds.

• Patrascu, Thorup - STOC 2006[10]; SODA2007[11] –Gave tight bounds for optimal searching
predecessors among a static set of integers when a = lg space

n :

Θ(min{logw n, lg(
w − lg n

a
),

lg w
a

lg( a
lgn lg w

a )
,

lg w
a

lg(lg w
a / lg lgn

a )
}) (1)

This trade-off between n&w&space shows that given n lgO(1) n space, the optimal search
time is Θ(min{logw n,

lgw

lg lgw
lg lgn

}). The result also implies that van Emde Boas tree is optimal

if w = O(lg n), and fusion tree is optimal if lgw = Ω(
√

lg n lg lgn)

3 Communication Complexity

3.1 Communication complexity view point

We consider the problem in the communication complexity model. Let Alice represent the query
algorithm and Bob represent memory. Alice’s input is query x; Bob’s input is the data structure
y. Alice and Bob are only permitted to communicate by sending messages to each other of size
at most a and b respectively. Let a = O(lg space), so using our polynomial space assumption,
a = O(lg n). Let b = w, size of a word. The goal is to compute some function f(x, y). In our case,
the function is the color of the predecessor. Then #messages exchanged between Alice and Bob
is at most twice #probes needed in the cell-probe model. Note, however, that the communication
model is much stronger, since it allows both parties to perform arbitrary computation therefore
will give a stronger lower bound.

3.2 Predecessor lower bound

Claim: # messages needed in the communication model is Ω(min{lgaw, lgb n}).

Corollary Beame-Fich-Xiao lower bound:O(min{ lgw
lg lgw ,

√
lgn

lg lgn)}

We have a = Θ(lg n), b = w, when space is nO(1). The lower bound is largest when logaw = logb n.

logaw = logb n⇒
lgw

lg lg n
=

lg n

lgw
⇒ lgw =

√
lg n lg lg n⇒ lg lgw = lg lg n (2)

So the bound becomes lgaw =
√

lgn
lg lgn . In terms of w, we find lg lgw = Θ(lg lg n), so lgb n = lgw

lg lgw .

Therego lower bound is
√

lgn
lg lgn = lgw

lg lgw .
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4 Round Elimination

Round elimination can be applied to an abstract communication game (not neccessarily related to
the predecessor problem). It gives some conditions under which the first round of communication
can be eliminated. To do this, we consider the “k-fold” of an arbitrary function f :

Definition 1. Let f (k) be a variation on f , in which Alice has the k inputs x1, . . . , xk, and Bob
has inputs: y, i ∈ 1, . . . k, and x1, . . . , xi−1 (note that this overlaps with Alice’s inputs). The goal
is to compute f(xi, y).

Now assume Alice must send the first message. Observe that she must send this message even
though she doesn’t know i yet. Intuitively, if a� k, she is unlikely to send anything useful about
xi, which is the only part of her input that matters. Thus, we can treat the communication protocol
as starting from the second message.

Lemma 2 (Round Elimination Lemma). Assume there is a protocol for f (k) where Alice speaks
first that uses m messages and has error probability δ. Then there is a protocol for f where Bob
speaks first that uses m− 1 messages and has error probability δ +O(

√
a/k).

Intuition If i was chosen uniformly at random (which is the worst case), in Alice’s first message
the expected number of bits “about xi” is a

k . Bob can guess these bits at random; the probability

of guessing all bits correctly is 1/2a/k, so the probability of failure is 1 − 2−a/k. Because we are
interested in small a

k , we have erro increase of 1−2−a/k ≈ a/k. Thus, by eliminating Alice’s message,
the error probability should increase by about a

k . In reality, this intuition is not entirely correct,

and we can only bound the increase in the error by
√
a/k, which is often acceptable depending on

the application.

5 Proof of Predecessor Bound

Let t = # cell probes (equivalently, the number of rounds of communication) made by the prede-
cessor algorithm. Our goal is to perform t-round eliminations.

• 1 After t-round eliminations, remaining protocol has no messages, the color of the predecessor
must be guessed (assuming n′ ≥ 2), result in Pr{success} ≤ 1

2 .

• 2 As we perform more eliminations, we are reducing n and w to some n′ and w′. We want to
increase the probability of error by at most 1

3t each time, so that at the end, we still have a
nontrivial success probability (at least 2

3).

So we reach a contradiction.

5.1 Eliminating Alice→Bob

Alice’s input has w′ bits (initially, w′ = w). Divide it into k = Θ(at2) equal-size chunks x1, . . . , xk.
Each chunk is of w′/k bits. We want error increase to be O(1/t).
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We construct a tree with branching factor 2w
′/k on the w′-bit strings corresponding to the Alice’s

possible inputs, which are the elements of the data structure. The tree then has height k. To
get lower bound(worst case), constrain n′ elements to all differ in ith chunk. Alice and Bob know
the structure of the inputs, so Bob knows i, the val the ith chunk, and x1, . . . , xi (because all of
Bob’s values must start with this common prefix). Thus, when Alice’s message is eliminated, the
goal changes to query xi in data structure for ith chunk, w′ is reduced to w′/k = Θ(w′/at2). An
analogy of this data structure is van Emde Boas tree since vEB binary searches on levels to find
longest prefix match, reducing w′ as it goes. Using the lemma, the error probability increases by
O(

√
a/at2) = O(1/t), which is exactly what we can afford per elimination.

5.2 Eliminating Bob→Alice

Now that Alice’s message is eliminated, Bob is speaking first, so he doesn’t know the query’s value.
Bob’s input is n′ integers each of size w′ bits. Divide the integers into k = Θ(bt2) equal chunks of
n′/k integers each. Remember that fusion trees could recurse in a set of size n/w1/5 after O(1) cell
probes. Here, we are proving that after one probe, you can only recurse into a set of size n/wO(1),
which gives the same bound for error increase, which is O(1/t).

To get lower bound, constrain input such that ith chunk xi starts with prefix ”i”’ in binary. Alice’s
query starts with some random lg k bits, which decides which chunk is interesting. If Bob speaks
first, he cannot know which chunk is interesting,

So using the lemma, the elimination rises error probability by O(1/t); reduces n′ to n′/k = Θ(n′/bt2)
and w′ to w′− lg k = w′−Θ(lg bt2). As long as w′ does not get too small, w = Ω(lg(bt2)), this last
term is negligible (say, it reduces w′ by a factor of at most 2).

5.3 Stopping

Thus, each round elimination reduces n′ to Θ(n′/bt2) and w′ to Θ(w′/at2). Further, the probability
of error at the end can be made to be at most 1

3 by choosing appropriate constants.

We stop the elimination when w′ = O(lg(bt2)) or n′ = 2. If these stop conditions are met, we have
proven our lower bound: there were many rounds initially, so we could do enough eliminations to
reduce n and w to these small values. Otherwise, we have a protocol which gives an answer with
zero messages, and the error probability is at most 1

3 , which is impossible. So we must be in the
first case (the stop conditions are met).

Hence, we established a lower bound t = Ω(min{lgat2 w, lgbt2 n}). However, because t = O(lg n), a ≥
lg n and t = O(lgw), b = w, the bases of the logarithms are between a and a3 and between b and
b3 respectively. Thus, we found t = Ω(min{lgaw, lgb n}).
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