
6.851: Advanced Data Structures Spring 2010

Lecture 5 — Feb 18th, 2010

Prof. Erik Demaine and Dr. André Schulz Scribe: David Stein and Jacob Steinhardt

1 Overview

In the last lecture we started out by briefly discussing range trees (a topic we started two lectures
ago). In particular, we showed how to support dynamic insertions and deletions in range trees
efficiently. After this, we discussed the vertical line stabbing problem — given a collection of
intervals, support queries of the form “How many intervals intersect the line x = x0?”. We showed
that both interval trees and segment trees could solve this problem efficiently. Segment trees are a
bit more memory-efficient, but interval trees are more flexible for other applications. We used these
data structures to solve the windowing problem — given a collection of line segments, report how
many lie in a given axis-aligned rectangle. In solving the windowing problem, we had to introduce
an additional data structure called a priority search tree.

In this lecture we study kinetic data structures. These are data structures that contain information
about objects in motion. They support the following three types of queries: (i) modify the motion
path of an object; (ii) move forward to a specified point in time; (iii) return information about the
state of the objects in the current time. We will go over kinetic sorting and kinetic heaps, and then
state several results about kinetic data structures without proof.

After covering kinetic data structures, we will discuss the ray shooting problem — given a simple
(possibly non-convex) polygon, support queries asking for the first point of intersection of a ray
with the polygon. We will show how to support O(log2(n)) queries and outline an approach for
achieving a query time of O(log(n)).

2 Kinetic Data Structures

2.1 Introduction

A kinetic data structure is a data structure that stores moving data — that is, data that changes
in some predictable way over time. Examples would be the locations of physical objects over time.
We could also look at, for example, trajectories of objects in R

2 and think of the x-coordinate as
“time.”

Kinetic data structures are useful, for example, in computer graphics and video games, to determine
the next point in time at which two objects intersect.

Data. Each data point has a value that is a known function of time. For example, we could have
affine data (x(t) = a+bt). We could also have bounded-degree algebraic motion, or, more generally,
pseudo-algebraic motion. Pseudo-algebraic means that all certificates of interest flip between true
or false O(1) times as the objects move. It turns out that pseudo-algebraic will be the condition
that we generally need in order for our kinetic data structures to run efficiently.

1

Operations. A kinetic data structure must support three types of operations:

• modify(x, f(t)) The previous position function describing point x is replaced by f(t). This
allows us to refit the structure to more up-to-date information, which is essential if the function
we use to approximate the position of a point is imperfect.

• advance(t) The advance function advances the current time in the data structure to t. The
current t must be less than the new t.

• query The final operation queries the data structure relative to the current time. The specific
queries are dependent on the data structure in question, but possible queries would be findmin,
findmedian, etc.

In practice, we will rarely try to deal with the modify operation — the field of kinetic data structures
as a whole is not very good at dealing with it rigorously.

Certificates. Before defining kinetic data structes we need to define certificates. A certificate
is a testable logical statement pertaining to our data structure. A set of certificates can provide
proof that a specific property of a data structure is true. For a simple example (borrowed from
[Gui04]) consider the convex hull of four points:

The convex hull of the points a, b, c, and d.

The certificates

• a is left of bc

• b is right of ad

• c is left of ad

• d is left of bc

provide a complete certification on the convex hull of abcd, as at least one certificate will change
any time the convex hull of the points a, b, c, and d, changes its defining points.

Approach. The basic idea for a kinetic data structure is to store a static data structure and the
conditions under which the data structure is valid, then fix the data structure as the conditions are
violated. We outline this approach below:

1. store a data structure that is accurate now (i.e. at the current time)

2. augment the data structure with a set of certificates sufficient to prove the data structure
valid.

2

3. compute the failure time for each certificate

4. store the failure times in a priority queue

5. as certificates fail, fix the data structure and replace the certificates as needed

Metrics. There are four metrics we generally use to measure the performance of a kinetic data
structure:

• responsiveness — when an event happens (e.g. a certificate failing), how quickly can the
data structure be fixed?

• local — what is the most number of certificates any object participates in?

• compact — what is the total number of certificates?

• efficient What is the ratio of the worst-case number of data structure events (disregarding
modify) to the worst case number of “necessary” changes? (The notion of a “necessary
change” is somewhat slippery. In practice we will define it on a per-problem basis.)

2.2 Kinetic Predecessor

The first kinetic data structure problem we will look at is kinetic predecessor (also called kinetic
sorting). We want to support queries asking for the predecessor of an element (assuming the
elements are sorted by value). We take the following approach:

1. Maintain a balanced binary search tree.

2. Let x1, . . . , xn be the in-order traversal of the BST. Keep the certificates {(xi < xi+1) | i =
1, . . . , n − 1}.

3. Compute the failure time of each certificate as failure timei := inf{t ≥ now | xi(t) > xi+1(t)}.
For example, if the motion of each object is linear, compute the first time after the current
point at which two lines intersect.

4. Implement advance(t) as follows:

while t >= Q. min :
now = Q. min
event (Q. de l e t e−min)

now = t

de f i n e event (x [i] > x [i +1]) :
swap (x [i] , x [i +1] ,BST)
add−c e r t i f i c a t e (x [i +1] <= x [i])
r ep lace−c e r t i f i c a t e (x [i −1] <= x [i] , x [i −1] <= x [i +1])
r ep lace−c e r t i f i c a t e (x [i +1] <= x [i +2] , x [i] <= x [i +2])

3

We now analyze our data structure relative to the metrics defined above.

Responsiveness. Because we use a balanced BST, and a certificate failure only affects O(1)
elements, we can fix the data structure in O(log(n)) time.

Local. Every object only participates in O(1) certificates (in fact, always at most 2).

Compact. There are O(n) certificates total.

Efficient. Assuming pseudo-algebraic motion, every pair of objects only changes order O(1) times,
meaning that the total number of data-structure events is O(n2) (since there are O(n2) pairs of
objects). If we have n

2 points moving linearly with velocity 1, and n

2 points moving linearly with
velocity −1, then points will change order Ω(n2) times, so the number of “necessary” events is
Ω(n2) (since we must respond every time two objects change order). Therefore, the efficient is
O(1).

Note that it is actually possible that there is a more efficient data structure to support kinetic
predecessor. In particular, we have not actually proved that it is necessary to respond to all events.

2.3 Kinetic Heap

We next consider the kinetic heap problem. For this problem, the data structure operation we
want to implement is findmin. We do this by maintaining a heap (for now, just a regular heap, no
need to worry about Fibonacci heaps). Our certificates check whether each node is smaller than
its two children in the heap. Whenever a certificate breaks, we simply apply the heap-up operation
to fix it, and then modify the certificates of the surrounding nodes in the heap appropriately. In
this case, our data structure has O(log(n)) responsiveness1, O(1) locality, and O(n) compactness.
The only non-obvious metric is efficiency. We show below that the efficiency is in fact O(log(n))
(by showing that the total number of events is O(n log(n))).

Analyzing the number of events in kinetic heap. We will show that there are at most
O(n log(n)) events in a kinetic heap using amortized analysis. For simplicity, we will carry through
our analysis in the case that all functions are linear, although the general case works the same.

Define Φ(t, x) as the number of decendents of x that overtake x at some time after t.

Define Φ(t, x, y) as the number of decendants of y (including y) that overtake x at some time greater
than t. Clearly, Φ(t, x) = Φ(t, x, y) + Φ(t, x, z), where y and z are the children of x.

Finally, define Φ(t) =
∑

x

(Φ(t, x)). Φ will be the potential function we use in our amortized

analysis. Observe that Φ(t) is O(n log(n)) for any value of t, since it is at most the total number
of descendants of all nodes, which is the same as the total number of ancestors of all nodes, which
is O(n log(n)). We will show that Φ(t) decreases by at least 1 each time a certificate fails, meaning
that certificates can fail at most O(n log(n)) times in total.

Consider the event at time t+ when a node y overtakes its parent x, and define z to be the other
child of x. The nodes x and y exchange places, but no other nodes do. This means that the only
changes to any of the potential functions between t and t+ are:

1The log(n) comes in because we need to use a priority queue to compute failure times.

4

Φ(t+, x) = Φ(t, x, y) − 1

and

Φ(t+, y) = Φ(t, y) + Φ(t, y, z).

Since y > x now, we also see that

Φ(t, y, z) ≤ Φ(t, x, z).

From these bounds it follows that:

Φ(t+) ≤ Φ(t) − 1,

which completes the analysis. We conclude that the total number of data structure modifications
is O(n log(n)).

2.4 Other Results

We now survey the results in the field of kinetic data structures. For a more comprehensive survey,
see [Gui04].

2D convex hull. (Also diameter, with, and minimum area/perimeter rectangle.) Efficiency:
O(n2+ǫ), Ω(n2) [BGH99]. Open: 3D case.

Smallest enclosing disk. O(n3) events. Open: O(n2+ǫ)?

Approximatie results. We can (1+ ǫ)-approximate the diameter and the smallest disc/rectangle

in 1
ǫ

O(1)
events [AHP01].

Delaunay triangulations. O(1) efficiency [AGMR98]. Open: how many total certificate changes
are there? It is known to be O(n3) and Ω(n2).

Any triangulation. Ω(n2) changes even with Steiner points [ABdB+99]. O(n2+ 1

3) events [ABG+02].
Open: O(n2) events? We can achieve O(n2) for pseudo-triangulations.

Collision detection. See the work done in [KSS00], [ABG+02], and [GXZ01].

Minimal spanning tree. O(m2) easy. Open: o(m2)? O(n2− 1

6) for H-minor-free graphs (e.g.
planar) [AEGH98].

3 Ray Shooting

We will now consider the ray shooting problem. This section closely follows [CEG+94], and reuses
several examples directly from the paper.

5

The ray shooting problem

The ray shooting problem asks us to efficiently determine when a ray first intersects a polygon.

Input. A collection of n points in R
2 — the vertices of a simple polygon P in counterclockwise

order. A polygon is simple if it has no holes (in other words, its boundary is connected).

Queries. A point inside P and a direction. The data structure should output the point in R
2

at which the ray emanating at the given point and going in the given direction first intersects the
boundary of P.

As a warm-up, we will consider the case of a convex polygon.

3.1 Convex Polygons

If P is convex, we can solve the ray shooting problem by triangulating — decomposing P into
triangles. Start by choosing a triangle so that 1

3 of the vertices of P lie between any two vertices
of the triangle. If we “cut out” the triangle from P, then we are left with 3 regions, each with n

3
vertices. If we draw another triangle in each of the 3 regions, we end up with n

6 nodes per region,
and so on untill there are n−2 triangles forming a binary tree with a ternary root. A nice property
of this tree is that any ray passes through at most O(log n) triangles. A diagram is shown below,
in Figure 3.1:

A ray cutting a regular polygon. The edges of the triangle form a tree decribing the vertecies.

To justify the claim that any ray passes through at most P(log n) triangles, we take the planar
dual of the triangulation, which yields, as noted above, a balanced tree. The triangles through
which the ray passes must form a path in the tree, and since the tree has diameter O(log n), the
ray cannot pass through more than O(log n) triangles.

If one were to imagine deforming any simple polygon into a convex polygon, a similar operation
could be performed. By picturing each edge as an elastic band while deforming the shape back, we
can picture how the tree structure and ray property would be maintained during the deformation,
though many of the triangle would be deformed.

6

An example of a polygon broken into pseudo-triangles. Each edge of the pseudo-triangles is formed

by taking the shortest path between two nodes.

More formally, suppose that we have a polygon P with vertices v1, . . . , vn in clockwise order. Let
E1 denote the shortest path within the polygon between v1 and v1+ n

3

. Let E2 be the shortest path
between v1+ n

3

and v1+ 2n

3

. Let E3 be the shortest path between v1+ 2n

3

and v1. Then taking E1, E2,

and E3 together gives us a simple polygon (a “pseudo-triangle”), and removing this pseudo-triangle
from P splits P up into some number of polygons, each with at most n

3 vertices. Once we have
initially split up the polygon, we recursively split up each of the smaller polygons.

We call these new deformed triangles pseudo-triangles. In the next section we describe how to
design a data structure to efficiently compute the point at which a ray fired into a pseudo-triangle
collides with a wall.

Left: A pseudo-triangle. Right:An example of a pseudo-triangulation of a specific polygon. The

red polygon is the first pseudo-triangle created, and the blue polygons are the two that are created

recursively.

3.1.1 Pseudotriangulations

As any three points in our polygon must either form a valid interial triangle or be deformed inwards,
this algorythm will always return a valid partitioning of “pseudo-triangles”. Furthurmore, because
any concave edge of the polygon must be formed against a wall of the polygon, any ray leaving
a pseudo-triangle will not reenter it before colliding with a boundary of the polygon. Since each
division must reduce the size of each region by a factor of two (after the first partition is drawn),
the process of triangulation terminates after O(log n) steps.

By tracking the path of a ray from pseudo-triangle to pseudo-triangle until it exits the polygon
we perform a traversal of the tree, and as the tree has depth O(log n), we will only travel through
O(log n) pseudo-triangles in total. We only need to determine how to track the path of a ray
through a given pseudo-triangle to determine runtime.

The behavior of a ray within a pseudo-triangle falls into two categories: either the ray homes into
the wall it would have in triangle, or it runs into a wall that it would have missed had there been
no concave edges. We can consider the cases of “homeing” and “fly-by” (see figure), to analyze
these two options.

7

3.1.2 Ray Shooting in a psuedotriangle

We now can describe our data structure. For the edge of each pseudo-triangle we store a WBBST
of the vertecies on that edge valued by their slope and weighted by their bay size, which we leave
ambiguous as it appears on the problem set. We then create cascading links to similarly sloped
line segments on other edges in our main data structure.

The red homes into the pseudo-triangle, the blue flys by the bottom before homing into the left.

homing Consider first the homing case, in which the ray collides directly with a wall. Clearly a
simple lookup in the BST of the edge the vetor is pointing at will find this edge.

fly-by However, this ignores the case of the ray running into the adjacent wall (imagine the blue
ray in the figure being slightly lower). By searching the BST for the ray parallel we can test if the
ray falls passes under the cancave edge. If it does, this reduces back to the homing case.

runtime Because lookup is O(log n) per pseudotriangle and is run in O(log n) this data structure
supports ray shooting lookup in O(log2 n). In fact, this ignores potential speedups from analysis
of the size of pseudo-triangles and introduction of fractional cascading, but these factors are left as
an excersize and discussion in next lecture respectively.

References

[ABdB+99] Pankaj K. Agarwal, Julien Basch, Mark de Berg, Leonidas J. Guibas, and John Her-
shberger. Lower bounds for kinetic planar subdivisions. In SCG ’99: Proceedings of

the fifteenth annual symposium on Computational geometry, pages 247–254, New York,
NY, USA, 1999. ACM.

[ABG+02] Pankaj K. Agarwal, Julien Basch, Leonidas J. Guibas, John Hershberger, and Li Zhang.
Deformable free-space tilings for kinetic collision detection. I. J. Robotic Res.,
21(3):179–198, 2002.

[AEGH98] Pankaj K. Agarwal, David Eppstein, Leonidas J. Guibas, and Monika Rauch Henzinger.
Parametric and kinetic minimum spanning trees. In FOCS, pages 596–605, 1998.

[AGMR98] Gerhard Albers, Leonidas J. Guibas, Joseph S. B. Mitchell, and Thomas Roos. Voronoi
diagrams of moving points. Int. J. Comput. Geometry Appl., 8(3):365–380, 1998.

8

[AHP01] Pankaj K. Agarwal and Sariel Hal-Peled. Maintaining approximate extent measures
of moving points. In SODA ’01: Proceedings of the twelfth annual ACM-SIAM sym-

posium on Discrete algorithms, pages 148–157, Philadelphia, PA, USA, 2001. Society
for Industrial and Applied Mathematics.

[BGH99] Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for mobile
data. J. Algorithms, 31(1):1–28, 1999.

[CEG+94] Bernard Chazelle, Herbert Edelsbrunner, Michelangelo Grigni, Leonidas J. Guibas,
John Hershberger, Micha Sharir, and Jack Snoeyink. Ray shooting in polygons using
geodesic triangulations. Algorithmica, 12(1):54–68, 1994.

[Gui04] Leonidas J. Guibas. Kinetic data structures. 2004.

[GXZ01] Leonidas J. Guibas, Feng Xie, and Li Zhang. Kinetic collision detection: Algorithms
and experiments. In ICRA, pages 2903–2910, 2001.

[KSS00] David Kirkpatrick, Jack Snoeyink, and Bettina Speckmann. Kinetic collision detection
for simple polygons. In SCG ’00: Proceedings of the sixteenth annual symposium on

Computational geometry, pages 322–330, New York, NY, USA, 2000. ACM.

9

