
6.897: Advanced Data Structures Spring 2010

Lecture 2 — February 4, 2010

Prof. Erik Demaine Scribe: Hui Tang, Prasant Gopal

1 Overview

In the last lecture we discussed Binary Search Trees(BST) and introduced them as a model of
computation. A quick recap: A search is conducted with a pointer starting at the root, which is
free to move about the tree and perform rotations; however, the pointer must at some point in
the operation visit the item being searched. The cost of the search is simply the total number of
distinct nodes in the trees that have been visited by the pointer during the operation. We measure
the total cost of executing a sequence of searches S = 〈s1, s2, s3 . . .〉, where each search si is chosen
from among the fixed set of n keys in the BST.

We have witnessed that there are access sequences which require o(log(n)) time per operation. There
are also some deterministic sequences on n queries (for example, the bit reversal permutation) which
require a total running time of Ω(n log(n)) for any BST algorithm. This disparity however does
not rule out the possibility of having an instance optimal BST. By this we mean: Let OPT (S)
denote the minimal cost for executing the access sequence S in the BST model, or the cost of the
best BST algorithm which has access to the sequence apriori. It is believed that splay trees are
the “best BST”. However, they are not known to have o(log(n)) competitive ratio. Also, notice
that we are only concerned with the cost of the specified operations on the BST and we are not
accounting for the work done outside the model, say, the computation done for rotations etc.

This motivates us to search for a BST which is optimal (or close to optimal) on any sequence of
search. Given splay trees satisfy a number of properties like static optimatlity, working set bound,
dynamic-finger bound and linear traversal; they are a natural candidate for the dynamic optimality.
They are notoriously hard to analyse and understand and sometimes appear magical.

So, this led researchers to look for alternative approaches to build a dynamically optimal BST. The
best guarantee so far is the O(log log(n)) competitive ratio achieved by the Tango Trees - we shall
see them in the later part of the lecture.

Another perspective, is the recently proposed geometric view of the BST [DHIKP09]. In this
approach, an correspondence between the BST model of computation and points in R

2 is given.
Informally, call a set P of points arborally satisfied if, for any two points a, b ∈ P not on a common
horizontal or vertical line, there is al teast one point P \ {a, b} in the axis parallel rectangle defined
by a and b. Each search is mapped into theR2 in the following way: P = {(s1, 1), (s2, 2) . . . (sn, n)}.
In this lecture, we show prove the following : Finding the best BST for an access sequence S is
equivalent to finding the minimal cardinality superset P ′ ⊇ P that is arborally satisfied.

Another candidate for dynamic optimality is the Greedy BST algorithm; which was originally
proposed for the offline case. Informally, the Greedy BST does the following: when searching for
an item, it re-arranges the nides on the search path to minimize the cost of the future searches, by
making necessary rotations. All this is being with a hunch that going off the search path should
not help by much. It was conjectured that this algorithm is a constant factor approximation for

1

OPT (S).

We then give lower bounds on OPT (S). So far, only two lower bounds developed by Wilber were
known. Wilber’s first bound is used extensively for to show that Tango trees are o(log log(n))
competitive. Wilber’s second bound is stronger and folklore has it is indeed tight. The state-of-
the-art is, however, the upper bound of Tango trees and the Wilber lower bounds represent the
tighest bounds on the offline optimal BST.

2 BST and Arborally Satisfied Sets

We shall now define what constitutes as an BST execution. We use the letters n and m to refer to
the size of a BST, and the total number of search operations performed. Without loss of generality,
we assume that the key space is 1, 2, . . . n. We now define an execution of a BST algorithm.

Definition 1 (BST Execution). Given a search sequence S = 〈s1, s2 . . . sm〉, we say a BST al-
gorithm executes S by an execution E = 〈T0, τ1 → τ1′ . . . , τm → τm′〉, where τi → τi′ is the
reconfiguration the tree has undergone while searching for the key si and si ∈ τi for all i.

We shall use the notation �ab to denote a axis aligned rectangle with points a and b as its corners.
We assume that the x-coordinates of all the points are unique.

Definition 2 (Arborally Satified Set (ASS)). A pair of points (a, b) (or their induced rectangle
�ab) is arborally satisfied to a point set P if a and b are orthogonally collinear(horizontally or
vertically aligned) or if there is at least one point from the P \ {a, b} in �ab. A point set P is
arborally satisfied if all the pairs of points in P are arborally satisfied with respect to P .

Definition 3 (Geometric View of BST (GBST)). The geometric view of a BST execution E is the
point set P (E) = {(x, y)|x is visited in searching for item y}.

Lemma 4 (GBST ⇒ ASS). The point set P (E) for any BST execution is arborally satisfied.

Proof Sketch: Assume for contradiction that we can find two points (a, i) and (b, j) and yet no
other nodes were touched in the closed time interval [i, j]. Let c be the lowest common ancestor of
a and b in the BST after ith search. We have two cases:

c 6= a Then c must be touched at time i to get to a in the ith search and c must have a key value
between a and b. Contradiction.

c = a Then, at i, a is an ancestor of b is not touched from i to j. Thus a will remain on the access
path of b and that means a must be an ancestor of b at j and will be touched while accessing
b at j. Contradiction.

Lemma 5 (ASS ⇒ BST). For any arborally satisfied point set X, there exists a BST execution E

with P (E) = X. We call E the arboral view of X and write P−1(X) = E.

We let minASS(S) be the size of the smallest arborally satisfied super set of P (S), we have OPT(S)
= minASS(P (S)).

2

3 Wilber Bounds

The two Wilber bounds are functions of the access sequence, and they are lower bounds for all
BST structures. They imply, for instance, that there exists a fixed sequence of accesses which takes
Ω(lg n) per operations for any BST.

3.1 Wilber’s 2nd Lower Bound

Let 〈x1, x2, ..., xm〉 be the access sequence. For each access xj compute the following Wilber number.
We look at where xj fits among xi, xi+1, ..., xj−1 for all i = j−1, j−2... that is, counting backwards
from j − 1 until the previous access to the key xj . Now, we say that ai < xj < bi, where ai and bi

are the tightest bounds on xj discovered so far. Each time i is decremented, either ai increases or
bi decreases (more tightly fitting xj), or nothing happens (the access is uninteresting for xj). The
Wilber number is the number of alternations between ai increasing and bi decreasing.

Wilber’s 2nd lower bound [Wil89] states that the sum of the Wilber numbers of all xj ’s is a lower
bound on the total cost of the access sequence, for any BST. It should be noted that this only holds
in an amortized sense (for the total cost): the actual cost to access some xj may be lower than its
Wilber number on some BSTs. We ommit the proof; it is similar to the proof of Wilber’s 1st lower
bound, which is given below.

An interesting open problem is whether Wilber’s second lower bound is tight.

We now proceed to an interesting consequence of Wilber’s 2nd lower bound: key-independent
optimality. Consider a situation in which the keys are just unique identifiers, and, even though they
are comparable, the order relation is not particularly meaningful. In that case, we ”might as well”
randomly permute the keys. In other words, we are interested in Eπ[OPT (π(x1), π(x2), ..., π(xm)],
where the expectation is taken over a random permutation π of the set of keys.

Key-independent optimality is defined as usual with respect to the optimal offline BST.

Theorem 6 (key independent optimality [Iac02]). A BST has the key-independent optimality prop-
erty iff it has the working-set property.

In particular, splay trees are key-independently optimal.

3

Proof. (sketch) We must show that:

Eπ[dynamic OPT(π(x1), π(x2), ..., π(xm)] = Working-Set Bound Θ

(

m
∑

i=1

lg ti(xi)

)

The O(·) direction is easy: the working-set bound does not depend on the ordering, so it applies
for any permutation. We must now show that a random permutation makes the problem as hard
as the working-set problem:

• wilber2(xj) only considers the working-set of xj

• define W = {elements accessed since last access to xj}

• permutation π changes W

• xj falls “roughly” in the middle with constant probability

• E[# times ai increases] = Θ(lg |W |)

• E[# times bi decreases] = Θ(lg |W |)

• Claim: We expect a constant fraction of the increases in ai and the decreases in bi to
interleave ⇒ E[wilber2(xj)] = Θ (lg |W |)

3.2 Wilber’s 1st Lower Bound

Fix an arbitrary static lower bound tree P with no relation to the actual BST T , but over the same
keys. In the application that we consider, P is a perfect binary tree. For each node y in P , we label
each access xi L if key xi is in y’s left subtree in P , R if key xi is in y’s right subtree in P , or leave
it blank if otherwise. For each y, we count the number of interleaves (the number of alterations)
between accesses to the left and right subtrees: interleave(y) = # of alternations L ↔ R.

Wilber’s 1st lower bound [Wil89] states that the total number of interleaves is a lower bound for all
BST data structures serving the access sequence x. It is important to note that the lower bound
tree P must remain static.

Proof. (sketch) We define the transition point of y in P to be the highest node z in the BST T such
that the root-to-z path in T includes a node from the left and right subtrees of y in P . Observe
that the transition point is well defined, and does not change until we touch z. In addition, the
transition point is unique for every node y.

4

We must touch the transition point of y in the next access to a key labeled L or R, that is, within
the next 2 interleave(y)’s. This implies that the price we pay for accessing the sequence x is greater

than or equal to half the number of interleaves, that is, pay ≥ interleave(x)
2 .

4 Independent Rectangle Bounds

Definition 7. A pair of rectangles �ab and �cd are called independent if the rectangles are not
arborally satisfied and no corner of either rectangle is strictly inside each other.

Claim 8. If a point set Y contains an independent set of rectangles, then the minASS(Y) ≥ |I|
2 +

|Y |. In particular, if Y = P (S) for an access sequence S, then OPT (S) ≥ |I|
2 .

Definition 9 (�-Rectangles). We call a rectangle �ab to be �-rectangle (�-rectangle) if the slope
of the line segment ab is positive (negative).

From now on, all lemmas and theorems will be stated using �-rectangles; but they can symetrically
applied to �-rectangles as well.

A point set is � satisfied if every pair of points (a, b) that form a �-rectangle �ab si arborally
satisfied. In other words, �-rectangles need not be satisfied for � satisfication. Let minASS�(X)
be the size of the minimum �-satisfied superset of X, which is nothing more than a GreedyAss

that ignores �-rectangles:

The algorithm Greedyassis as follows: Sweep a line along the increasing y coordinate. When
considering a point on this line, for each unsatisfied �-rectangle formed by this point and another
one (below the line), add the rectangle’s northwest corner on the line to make it satisfied. Let
add�(X) be the final set of added points.

We now use minASS�(X) to independent rectangle bounds. We show that lower bound output
by this algorithm is at least 1

4maxIRB(X) + 1
2 |X|, and is within a constant factor of the best

independent rectangle bound.

5

Theorem 10. If X contains an independent set I of rectangles, then minASS⊠(X) ≥ |I|
2 + |X|.

Proof: We prove this using a chain of deductions:

1

2
max{Wilber I(X), Wilber II(X)} + |X|

≤
1

2
maxIRB(X) + |X|

≤ minASS⊠(X)

≤ minASS�(X) + minASS�(X)

≤ |add�(X)| + |add�(X) + 2|X|

= |IRB�(X)| + |IRB�(X) + 2|X|

≤ 2maxIRB(X) + 2|X|

≤ 2maxIRB(X) + 4|X|

≤ 4minASS⊠(X)

≤ 4minASS(X)

5 Tango Trees

Tango trees [DHIP04] are an O(lg lg n)-competitive BST. They represent an important step forward
from the previous competitive ratio of O(lg n), which is achieved by standard balanced trees. The
running time of Tango trees is O(lg lg n) higher than Wilber’s first bound, so we also obtain a
bound on how close Wilber is to OPT . It is easy to see that if the lower bound tree is fixed without
knowing the sequence (as any online algorithm must do), Wilber’s first bound can be Ω(lg lg n)
away from OPT , so one cannot achieve a better bound using this technique.

To achieve this improved performance, we divide a BST up into smaller auxiliary trees, which are
balanced trees of size O(lg n). If we must operate on k auxiliary trees, we can achieve O(k lg lg n)
time. We will achieve k = 1+ the increase in the Wilber bound given by the current access, from
which the competitiveness follows.

Let us again take a perfect binary tree P and select a node y in P . We define the preferred child
of y to be the root of the subtree with the most recent access (i.e. the preferred child is the left
one iff the last access under y was to the left subtree). If y has no children or its children have not
been accessed, it has no preferred child. An interleave is equivalent to changing the preferred child
of a node, which means that the Wilber bound is the number of changes to preferred children.

6

Now we define a preferred path as a chain of preferred child pointers. We store each preferred path
from P in a balanced auxiliary tree that is conceptually separate from T , such that the leaves link
to the roots of the auxiliary trees of “children” paths.

Because the height of P is lg n, each auxiliary tree will store ≤ lg n nodes. A search on an auxiliary
tree will therefore take O(lg lg n) time, so the search cost for k auxiliary trees = O(k lg lg n).

A preferred path is not stored by depth (that would be impossible in the BST model), but in the
sorted order of the keys.

5.1 Searching Tango trees

To search this data structure for node x, we start at the root node of the topmost auxiliary tree
(which contains the root of P). We then traverse the tree looking for x. It is likely that we will jump
between several auxiliary trees – say we visit k trees. We search each auxiliary tree in O(lg lg n)
time, meaning our entire search takes place in O(k lg lg n) time. This assumes that we can update
our data structure as fast as we can search, because we will be forced to change k − 1 preferred
children (except for startup costs if a node has no preferred children).

7

5.2 Balancing Auxiliary Trees

The auxiliary trees must be updated whenever preferred paths change. When a preferred path
changes, we must cut the path from a certain point down, and insert another preferred path there.

We note that cutting and joining resemble the split and concatenate operations in balanced BST’s.
However, because auxiliary trees are ordered by key rather than depth, the operations are slightly
more complex than the typical split and concatenate.

Luckily, we note that a depth > d corresponds to an interval of keys. Thus, cutting from a point
down becomes equivalent to cutting a segment in the sorted order of the keys. In this way, we
can change preferred paths by cutting a subtree out of an auxiliary tree using two split operations
and adding a subtree using a concatenate operation. To perform these cut and join operations, we
label the roots of the path subtrees with a special color and pretend it’s not there. This means we
only need to worry about doing the split and concatenate on a subtree of height lg n rather than
trying to figure out what to do with all the auxiliary subtrees hanging off the path subtree we are
interested in. We know that balanced BSTs can support split and concatenate in O(lg size) time,
meaning they all operate in O(lg lg n) time. Thus, we remain O(lg lg n)-competitive.

8

References

[DHIP04] Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Patrascu. Dynamic optimality
— almost. In FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’04), pages 484–490. IEEE Computer Society, 2004.

[Iac02] John Iacono. Key independent optimality. In ISAAC ’02: Proceedings of the 13th
International Symposium on Algorithms and Computation, pages 25–31. Springer-Verlag,
2002.

[Wil89] R. Wilber. Lower bounds for accessing binary search trees with rotations. SIAM J.
Comput., 18(1):56–67, 1989.

[DHIKP09] , Demaine, Erik D. and Harmon, Dion and Iacono, John and Kane, Daniel and
Pătraşcu, Mihai. The geometry of binary search trees. SODA ’09: Proceedings of the
twentieth Annual ACM-SIAM Symposium on Discrete Algorithms. 2009. 496–505. New
York, New York. Society for Industrial and Applied Mathematics.

9

