6.851 ADVANCED DATA STRUCTURES (SPRING’10)
Prof. Erik Demaine Dr. André Schulz TA: Aleksandar Zlateski

Problem 6| Sample Solutions

Dynamizing static search structures.

(a) To perform a successor search we start from the root node, perform a search for a successor
and follow the link to it’s left until we reach a leaf node.
The runtime recurrence is then: T'(n) = S(0(n'/¢)) + T(O(n'~1/¢))

For fusion trees we have:
T(n) = O(logw nl/C) + T(@(nl_l/c))
T(n) = O(c ' log, n) + O(c log, n*~V/¢ + T(©(n1-1/9%)))

Hence

Zc Uog,, n*~ 1/0 = Zc_l —1/¢)tlog, n)
T(n) = O(cclog,n) = O(log,, n)

(b) The space reccurence is: C(n) = ©(n'/¢)(C(n~1/¢)) +1). Since we have ©(n'/¢) subtrees of
size O(n(1=1/)) plus ©(n'/¢) for the space at the current level. We see that the reccurence solves

to C(n) = O(n).
(c) We will constrain the number of nodes in a subtree rooted at a node at depth d to be

k= 0(nt-1/9%

When inserting or deleting a node, we make sure that all the nodes on our path satisfy the
given property. when merging or splitting a node with k children we have to reconstruct its parent.
The node’s parent will have ©(k/(¢~1)) descendands, and ©(k'/(¢=1) children. Thus, rebuilding
the parent would take O(k%¢~1).

At any given level, we have to rebuild the node only after O(k) descendands have been in-
serted /removed. Hence the amortized cost is O(kﬁfl). Choosing % —1<=0,c>b+1 gives
us O(1) amortized cost per level, and the total of O(loglogn)



