
6.851 Advanced Data Structures (Spring’10)

Prof. Erik Demaine Dr. André Schulz TA: Aleksandar Zlateski

Problem 9 Due: Thursday, Apr. 15

Be sure to read the instructions on the assignments section of the class web page.

Link-cut tree analysis.

1. For the bound of the number of preferred child changes we used the heavy-light edge de-
composition of the forest. We showed that the preferred child changes during the access
operations happen only O(log n) time per operation (amortized). In the analysis we counted
all light preferred edge creations (O(log n) per access). Then we argued that the total num-
ber of heavy preferred edge creations is smaller than the total number of light preferred edge
creations plus n. Check if the link/cut operations interfere with this counting scheme. In
particular, we might create to many light preferred edges during a link or cut. Can we charge
these costs to the link/cut operations?

2. In the final analysis we used the access theorem for splay trees, with

size(v) = number of nodes in v’s subtree,

as weights. This allows us to analyze all splay costs for the access operations, since in this
case we only change weights in one splay tree. However, link/cut operations might affect
the weights more globally. In order to apply the access theorem we have to show the the
splay potential is not getting too large. Give upper and lower bounds for the splay potential
Φ =

∑
v log(size(v)) during the execution of the algorithm. Show how we can charge the costs

of the Φmax − Φmin to the link/cut operations.

Dynamic partition of [n] into intervals. Construct a data structure that dynamically main-
tains a partition of the set {1, . . . , n} := [n] into intervals. This means that every set of the partition
consists of consecutive numbers {a, a + 1, . . . }. For every interval we pick one of its elements as its
name. The following operations have to be supported by the data structure:

• name(x): returns the name of the interval containing x.

• merge(x): merges the interval containing x with immediately following interval.

• divide(x): subdivide the interval I containing x, into {y ∈ I | y ≤ x} and {y ∈ I | y > x}.

All operations should work in O(log log n) time.

1

