
6.851: Advanced Data Structures Spring 2007

Lecture 22 — 7 May

Prof. Erik Demaine Scribe: Mart́ı Boĺıvar

1 Overview

In the last lecture we introduced the concept of implicit, succinct, and compact data structures, and
gave examples for succinct binary tries, as well as proving a bijection between binary tries, rooted
ordered trees, and balanced parenthesis expressions. Succinct data structures were introduced
which solve the rank and select problems.

In this lecture we expand slightly on our previous discussion of succinct binary tries, and introduce
compact data structures for suffix arrays and suffix trees.

2 More on Binary Tries

Note that a leaf in a balanced-parenthesis representation of a binary trie is the string ()). As shown
in a paper by Munro, Raman, and Rao [1], the following queries on leaves can be implemented in
constant time using a succinct data structure.

leaf-rank(n) The number of leaves to the left of node n; denoted rank())(n).

leaf-select(i) The ith leaf; denoted select())(i).

leaf-count(n) Number of leaves in the subtree of node n; equal to rank())(matching) of parent)−
rank())(n).

leftmost leaf in subtree of n Equal to select())(rank())(n)).

rightmost leaf in subree of n Similar to above.

1

3 Minisurvey

Following is a small survey of results on compact suffix arrays. Recall that a compact data structure
uses O(n) bits, where n is the information-theoretic optimum.

Grossi and Vitter 2000 [2] Suffix array in

(
1

ε
+ O(1))|T | lg |Σ|

bits, with query time

O(
|P |

logε
|Σ| |T |

+ |output| logε
|Σ| |T |)

We will follow this paper fairly closely in our discussion today.

Ferragina and Manzini 2000 [3] This technique is known as the FM index. Space is

5Hk(T)|T | + O(
|T |

lg |T |
(|Σ| + lg lg |T |) + |T |ε|Σ|2|Σ| lg |Σ|)

bits, for all k, where Hk(T) is the kth-order empirical entropy, or the regular entropy condi-
tioned on knowing the previous k characters. Query time is

O(|P | + |output| lgε |T |).

The analysis of the FM index is tricky; in particular, the paper does not claim the above
bounds.

Sadakane 2003 [4] Space in bits is

1

ε
H0(T)|T | + O(|T | lg lg |Σ| + |Σ| lg |Σ|),

and query time is
O(|P | lg |T | + |output| lgε |T |).

Note that this bound is more like a suffix array, due to the multiplicative log factor.

Grossi, Gupta, Vitter 2003 [5] This is the only known succinct result. Space in bits is

Hk(T)|T | + O(|T | lg |Σ|
lg lg |T |

lg |T |
),

and query time is
O(|P | lg |Σ| + lgo(1) |T |).

4 Compressed suffix arrays

As a warm-up problem, we’ll consider compressed suffix arrays. In the next section, we will build
upon the discussion here in a compact suffix array construction. Henceforth, we shall assume that
|Σ| = 2, i.e. a binary alphabet. The words “even” and “odd” refer to the index of a character in T
(recall that suffix array elements contain indices into T denoting the beginning of the suffix).

2

4.1 Intuition

We will follow the three-way divide and conquer suffix array construction discussed in lecture 9,
but modify it to be a two-way division. The recursion is as follows.

start The initial text, T0, is T ; the initial size, n0, is n, and the initial suffix array, SA0, is SA,
the suffix array of T . We’ll define SA[i] as the index in T where the ith suffix begins.

step Tk+1 =< (Tk[2i], Tk [2i+1]) >, for i = 0, 1, ..., n/2; nk+1 = nk/2 (and hence after k recursions,
we’ll have a text of length n/2k on an alphabet of size 2k+1); SAk+1 = (1/2)·extract even
entries of old array SAk.

Now, we obviously can’t actually start where we say we do, since that would require knowing SA0,
which is exactly what we’re trying to build. So conceptually, we’ll walk up the recursion tree from
the bottom, which consists of the trivial case in which the entire text T ’s suffix array is constructed
as if T were written as a single letter.

4.2 Crawling Up the Recursion Tree

Since we’re recursing “backwards”, we need a way to represent SAk using SAk+1. We’ll use the
following queries to accomplish this efficiently:

evensucck(i) The “even successor” of i, defined as i if SAk[i] is even, and j if SAk[i] = SAk+1[j]−1.
One of these will be the case, since SAk+1 is SAk with every pair of letters joined together
as a single letter on an alphabet of twice the original size.

evenrankk(i) The “even rank” of i, or the number of even values in SAk[: i] (using slice notation
as in Python [6]). This equals the number of even suffixes preceding the ith suffix.

Additionally, we’ll let SAk[i] = 2SAk+1[evenrankk(evensucck(i))], minus 1 if SAk[i] is odd.

So constant time per operation on the above queries reduces a query on SAk to a query on SAk+1

in constant time. Hence, a query on SA0, the array we’re trying to build, will take O(l) time if we
recurse l times. Only l = lg lg n recursions will be necessary, for since we halve the size of the text
on each recursion, this will reduce the text to size nl = n/ lg n. We then use a normal suffix array,
which will use O(nl lg nl) = O(n) bits of space, and thus be compressed.

4.3 Construction

We will now construct a data structure that answers even-successor and even-rank queries in con-
stant time. We’ll begin with an auxiliary query, is-even:

isevenk(i) =

{

1 if SAk[i] even,
0 else

We can imagine storing this as an nk-bit vector. Since nk+1 = nk/2, the total number of bits is
geometric in n0 = n, so we’d need O(n) bits to do it this way, which won’t work. But for now, let’s
pretend that this is how we implement this.

3

Then we can implement evenrankk(i) with a rank structure on our imaginary bit vector in o(n)
space.

Doing evensucck(i) is trivial in the case that SAk[i] is even; there are nk/2 such values. Intuitively,
we could just store the values of j for odd values of SAk[i]. Note that we can’t actually write them
down, because that would require nk lg nk bits.

Whatever data structure we use, let’s order the values of j by i; that is, if we’re pretending to
store the values of j in an array called odds, we’d like evensucck(i) = odds[oddrankk(i)], where
oddrankk(k) = i − evenrankk(i).

Why is it useful to order the j’s by i? Well, that’s just ordering by suffix in the suffix array,
which is ordering by the odd suffix Tk[SAk[i] :], or ordering by (Tk[SAk[i]], Tk[SAk[i] + 1 :]) =
Tk[SAk[evensucck(i)] :]. This in turn is equivalent to ordering by (Tk[SAk[i]], evensucck(i)).

Now recall that we’re trying to create a data structure for answering evensucck(i) queries. So
ordering the j’s by i is equivalent to sorting by i and the values of j! That is to say, the values of
j are mostly in sorted order. So we will be storing pairs of letters in lexical order.

This means we need a clever way of storing a sorted array of nk/2 values vi, each of which is
2k + lg nk bits long. The 2k follows since at level k, each letter j will require 2k bits; similarly, each
value i requires lg nk bits.

The desired clever trick is to store the leading lg nk bits of each vi in unary differential encoding:

0lead(v1)10lead(v2)−lead(v1)1...

Where lead(vi) is the value of the leading lg nk bits of vi as an unsigned integer. That is to say, we
write down the difference between the value of vi and vi−1’s leading bits in unary, then write a 1,
and repeat.

There will then be nk/2 ones and at most 2lg nk = nk zeros, and hence at most (3/2)nk bits total
used for this encoding. Again by the geometric nature of successive values of nk, this will require
O(n) bits total, so the overall data structure is still compressed.

Note that this also gets you random access – the leading bits of vi have value equal to rank0(select1(i)).

The remaining 2k bits can be stored in the obvious way, in an array, as that will use 2k nk

2 = 2k n/2k

2 =
n
2 bits, for total of n/2+3nk/2+o(nk) bits. This completes the construction of a compressed suffix
array.

5 Compact suffix arrays

The problem with our compressed suffix array construction is that its lg lg n levels require n lg lg n
space. As in the last lecture on binary tries, we would prefer to reduce the number of recursion
levels to a constant. This would give us linear space for a time tradeoff.

To accomplish this, we will store only 1/ε + 1 levels of recursion, namely those values of k equal to

0, εl, 2εl, ..., l = lg lg n.

4

In essence, we are clustering 2εl letters in a single stroke. We now need to be able to jump εl levels
at once. We are not able to do this in constant time.

5.1 Level jumping

In order to present a method of representing SAkεl with SA(k+1)εl, the concept of “even” and
“successor” need to be generalized from the compressed construction.

In particular, the previous notion of an index i being “even” in the text T will henceforth mean
“even for εl recursions”. This buys us a generalized notion of evenrankk(i) as well, in the obvious
way. We’ll define successor similarly, with evensucck(i) = j, where SAkεl[i] = SAkεl[j] − 1.

Using these definitions, computing SAkεl[i] is as follows:

• Follow the successor pointer repeatedly until index j is at the next level down, namely (k+1)εl.

• Recurse: SA(k+1)εl[evenrankk+1(j)]

• Multiply by 2εl, as this, modulo rounding errors, is how many letters we clustered per recursion
level. We then correct the round-off error by subtracting the number of calls to successor in
the first step.

The runtime is then clearly linear in the number of times we call successor in the first step. This
equals 2εl, because the successor walking is done in text space, not suffix space. That is, each
recursion level in effect halves the number of letters in T εl times.

5.2 Analysis

From the arguments outlined in the previous subsection, search time is 2εl lg lg n = lgε n lg lg n =
O(lgε′ n). (We have introduced a new variable ε′, which can be made arbitrarily small by appro-
priate choice of ε).

Space is O(n): we use the same unary differential encoding for successor as in the compressed
construction. This is a linear number of bits per level, but we have a (large) multiplicative constant
factor due to level jumping. Nevertheless, with a constant number of levels, space is linear overall.

This gets us a compact suffix array.

Open problem: is it possible to achieve constant query time in linear space?

6 Suffix trees

Suffix arrays are somewhat troublesome due to the log factor paid to search. Suffix trees eliminate
this problem. An algorithm for creating a compact suffix tree given a compact suffix array was also
given in [1]. This converts a suffix array which uses m bits into a suffix tree which uses o(m) bits.

5

6.1 Implementation

This is how it’s done.

6.2 Analysis

6.3 Improvement

It is also possible to improve this, creating a succinct suffix tree given a suffix array. This algorithm
is complicated; the reader is referred to [1] for the details.

References

[1] J. I. Munro, V. Raman, and S. S. Rao, Space Efficient Suffix Trees, Journal of Algorithms,
39(2):205-222.

[2] R. Grossi and J. S. Vitter, Compressed suffix arrays and suffix trees with applications to text

indexing and string matching, Thirty-Second Annual ACM Symposium on Theory of Comput-
ing, vol. STOC,pp. 397-, 2000.

[3] P. Ferragina and G. Manzini, Indexing Compressed Text, Journal of the ACM, Vol. 52 (2005),
552-581.

[4] K. Sadakane, New text indexing functionalities of the compressed suffix arrays. Journal of
Algorithms, 48(2): 294-313 (2003).

[5] R. Grossi, A. Gupta, J. S. Vitter, High-order entropy-compressed text indexes, SODA 2003:
841-850.

[6] G. van Rossum, Python Tutorial, http://docs.python.org/tut/node5.html#SECTION005140000000000000000.

6

