6.851: Advanced Data Structures Spring 2007

Lecture 22 — 7 May
Prof. Erik Demaine Scribe: Marti Bolivar

1 Overview

In the last lecture we introduced the concept of implicit, succinct, and compact data structures, and
gave examples for succinct binary tries, as well as proving a bijection between binary tries, rooted
ordered trees, and balanced parenthesis expressions. Succinct data structures were introduced
which solve the rank and select problems.

In this lecture we expand slightly on our previous discussion of succinct binary tries, and introduce
compact data structures for suffix arrays and suffix trees.

2 DMore on Binary Tries

Note that a leaf in a balanced-parenthesis representation of a binary trie is the string ()). As shown
in a paper by Munro, Raman, and Rao [1], the following queries on leaves can be implemented in
constant time using a succinct data structure.

leaf-rank(n) The number of leaves to the left of node n; denoted ranky)(n).

leaf-select (i) The i*" leaf; denoted select y)(i).

leaf-count(n) Number of leaves in the subtree of node n; equal to rank))(matching) of parent)—
rank‘()) (’I’L)

leftmost leaf in subtree of n Equal to select(y (rank(n)).

rightmost leaf in subree of n Similar to above.

3 Minisurvey

Following is a small survey of results on compact suffix arrays. Recall that a compact data structure
uses O(n) bits, where n is the information-theoretic optimum.

Grossi and Vitter 2000 [2] Suffix array in

(+0)T]Ig 5]

bits, with query time

1P|
O + |output|logfy [T

We will follow this paper fairly closely in our discussion today.
Ferragina and Manzini 2000 [3] This technique is known as the FM index. Space is

T
5H(T)[T| + O(ﬁ(m +lglg |T]) + |TF |z 2P 1)

bits, for all k, where Hy(T) is the kt-order empirical entropy, or the regular entropy condi-
tioned on knowing the previous k characters. Query time is

O(|P| + |output| 1g® |T|).

The analysis of the FM index is tricky; in particular, the paper does not claim the above
bounds.

Sadakane 2003 [4] Space in bits is
1
SHo(DIT| + O(IT g 1g [Z] + [1g [Z),

and query time is
O(|P|1g |T'| + |output|lg® |T']).
Note that this bound is more like a suffix array, due to the multiplicative log factor.

Grossi, Gupta, Vitter 2003 [5] This is the only known succinct result. Space in bits is

lglg |7

H(T)|T|+O(T g S5 S

);

and query time is
O(|P|1g [Z] +1g°M |T)).

4 Compressed suffix arrays

As a warm-up problem, we’ll consider compressed suffix arrays. In the next section, we will build
upon the discussion here in a compact suffix array construction. Henceforth, we shall assume that
|X| =2, i.e. a binary alphabet. The words “even” and “odd” refer to the index of a character in T
(recall that suffix array elements contain indices into T' denoting the beginning of the suffix).

4.1 Intuition

We will follow the three-way divide and conquer suffix array construction discussed in lecture 9,
but modify it to be a two-way division. The recursion is as follows.

start The initial text, Tg, is T'; the initial size, ng, is n, and the initial suffix array, SAg, is SA,
the suffix array of 7. We’ll define SA[i] as the index in T where the i suffix begins.

step Tii1 =< (Tg[21], Tk[2i+1]) >, for i =0,1,...,n/2; ngt1 = ngk/2 (and hence after k recursions,
we’ll have a text of length n/2% on an alphabet of size 2¥+1); SA,; = (1/2)-extract even
entries of old array SAy.

Now, we obviously can’t actually start where we say we do, since that would require knowing S Ay,
which is exactly what we’re trying to build. So conceptually, we’ll walk up the recursion tree from
the bottom, which consists of the trivial case in which the entire text T’s suffix array is constructed
as if T' were written as a single letter.

4.2 Crawling Up the Recursion Tree

Since we're recursing “backwards”, we need a way to represent SAy using SAii1. We'll use the
following queries to accomplish this efficiently:

evensuccy (i) The “even successor” of i, defined as i if SAg[i] is even, and j if SA[i] = SAk41[j]—1.
One of these will be the case, since SAg 1 is SAg with every pair of letters joined together
as a single letter on an alphabet of twice the original size.

evenranky (i) The “even rank” of 4, or the number of even values in SA[: 7] (using slice notation
as in Python [6]). This equals the number of even suffixes preceding the i*" suffix.

Additionally, we'll let SAg[i] = 25 Agy1[evenranky(evensuccy(i))], minus 1 if SAg[i] is odd.

So constant time per operation on the above queries reduces a query on SAy to a query on SAg4q
in constant time. Hence, a query on SAy, the array we're trying to build, will take O(l) time if we
recurse [times. Only [= Iglgn recursions will be necessary, for since we halve the size of the text
on each recursion, this will reduce the text to size n; = n/lgn. We then use a normal suffix array,
which will use O(n;1gn;) = O(n) bits of space, and thus be compressed.

4.3 Construction

We will now construct a data structure that answers even-successor and even-rank queries in con-
stant time. We’ll begin with an auxiliary query, is-even:

1 if SAg[i] even,
0 else

iseveny(i) = {

We can imagine storing this as an ng-bit vector. Since ngi1 = ny/2, the total number of bits is
geometric in ng = n, so we’d need O(n) bits to do it this way, which won’t work. But for now, let’s
pretend that this is how we implement this.

Then we can implement evenranky(i) with a rank structure on our imaginary bit vector in o(n)
space.

Doing evensuccy (i) is trivial in the case that S Ag[i] is even; there are ny/2 such values. Intuitively,
we could just store the values of j for odd values of SAg[i]. Note that we can’t actually write them
down, because that would require ny lg ny bits.

Whatever data structure we use, let’s order the values of j by 4; that is, if we’re pretending to
store the values of j in an array called odds, we’d like evensuccy(i) = odds[oddranky(i)], where
oddranky (k) = i — evenranky(i).

Why is it useful to order the j’s by i? Well, that’s just ordering by suffix in the suffix array,
which is ordering by the odd suffix Tj[SAk[i] :], or ordering by (T%[SAx[i]], Tk[SAk[i] + 1 :]) =
T[S A [evensucek(i)] :]. This in turn is equivalent to ordering by (T} [S Ax[i]], evensucey(i)).

Now recall that we're trying to create a data structure for answering evensuccy(i) queries. So
ordering the j’s by i is equivalent to sorting by ¢ and the values of j! That is to say, the values of
j are mostly in sorted order. So we will be storing pairs of letters in lexical order.

This means we need a clever way of storing a sorted array of mnj/2 values v;, each of which is
2F +1gny, bits long. The 2* follows since at level k, each letter j will require 2* bits; similarly, each
value ¢ requires g ny, bits.

The desired clever trick is to store the leading Ign; bits of each v; in unary differential encoding:
Olead(vl) lolead(vg)—lead(vl) 1.

Where lead(v;) is the value of the leading lg ny bits of v; as an unsigned integer. That is to say, we
write down the difference between the value of v; and v;_1’s leading bits in unary, then write a 1,
and repeat.

There will then be ny/2 ones and at most 2'8™ = n;, zeros, and hence at most (3/2)n;, bits total
used for this encoding. Again by the geometric nature of successive values of ny, this will require
O(n) bits total, so the overall data structure is still compressed.

Note that this also gets you random access — the leading bits of v; have value equal to rankg(selecty(7)).

k
The remaining 2¥ bits can be stored in the obvious way, in an array, as that will use 2% Tk = ok % =

5 bits, for total of n/24-3n;, /24 0(ny) bits. This completes the construction of a compressed suffix
array.

5 Compact suffix arrays

The problem with our compressed suffix array construction is that its 1glg n levels require nlglgn
space. As in the last lecture on binary tries, we would prefer to reduce the number of recursion
levels to a constant. This would give us linear space for a time tradeoff.

To accomplish this, we will store only 1/e + 1 levels of recursion, namely those values of k equal to

0,¢el,2¢l,....1 =l1glgn.

In essence, we are clustering 2° letters in a single stroke. We now need to be able to jump el levels
at once. We are not able to do this in constant time.

5.1 Level jumping
In order to present a method of representing SAg with SA(x11)e, the concept of “even” and
“successor” need to be generalized from the compressed construction.

In particular, the previous notion of an index ¢ being “even” in the text T will henceforth mean
“even for el recursions”. This buys us a generalized notion of evenranky (i) as well, in the obvious
way. We'll define successor similarly, with evensuccy (i) = j, where S Ay [i] = SAkea[j] — 1.

Using these definitions, computing S Ax[i] is as follows:

e Follow the successor pointer repeatedly until index j is at the next level down, namely (k+1)el.
e Recurse: SA(jq1)a[evenranky1(7)]

o Multiply by 2¢, as this, modulo rounding errors, is how many letters we clustered per recursion
level. We then correct the round-off error by subtracting the number of calls to successor in
the first step.

The runtime is then clearly linear in the number of times we call successor in the first step. This
equals 2¢', because the successor walking is done in text space, not suffix space. That is, each
recursion level in effect halves the number of letters in 7" el times.

5.2 Analysis

From the arguments outlined in the previous subsection, search time is 2¢'1glgn = lgnlglgn =
O(lg® n). (We have introduced a new variable ¢’, which can be made arbitrarily small by appro-
priate choice of).

Space is O(n): we use the same unary differential encoding for successor as in the compressed
construction. This is a linear number of bits per level, but we have a (large) multiplicative constant
factor due to level jumping. Nevertheless, with a constant number of levels, space is linear overall.

This gets us a compact suffix array.
Open problem: is it possible to achieve constant query time in linear space?

6 Suffix trees

Suffix arrays are somewhat troublesome due to the log factor paid to search. Suffix trees eliminate
this problem. An algorithm for creating a compact suffix tree given a compact suffix array was also
given in [1]. This converts a suffix array which uses m bits into a suffix tree which uses o(m) bits.

6.1 Implementation

This is how it’s done.

6.2 Analysis
6.3 Improvement

It is also possible to improve this, creating a succinct suffix tree given a suffix array. This algorithm
is complicated; the reader is referred to [1] for the details.

References

[1] J. I. Munro, V. Raman, and S. S. Rao, Space Efficient Suffiz Trees, Journal of Algorithms,
39(2):205-222.

[2] R. Grossi and J. S. Vitter, Compressed suffix arrays and suffix trees with applications to text
indexing and string matching, Thirty-Second Annual ACM Symposium on Theory of Comput-
ing, vol. STOC,pp. 397-, 2000.

[3] P. Ferragina and G. Manzini, Indexing Compressed Text, Journal of the ACM, Vol. 52 (2005),
552-581.

[4] K. Sadakane, New text indexing functionalities of the compressed suffiz arrays. Journal of
Algorithms, 48(2): 294-313 (2003).

[5] R. Grossi, A. Gupta, J. S. Vitter, High-order entropy-compressed text indexes, SODA 2003:
841-850.

[6] G.van Rossum, Python Tutorial, http://docs.python.org/tut/node5. html#SECTION005140000000000000000

