
6.851: Advanced Data Structures Spring 2007

Lecture 14 — April 4, 2007

Prof. Erik Demaine Scribe: Meshkat Farrokhzadi

1 Overview

In this lecture, we discuss lower bounds on the cell-probe complexity of the static predecessor
problem. The parameters of interest are w, the size of the machine word, and also the size of
input integers, and n, the set size. Observe that a requirement on space is essential for static lower
bound, since with space 2w one can precompute all answers, and respond in constant time.

In this lecture, we concentrate on bounds that are purely in w or n, and we assume the space
is nO(1). In particular, we use a technique called round elimination to show that for all w there
exists an n such that the problem requires Ω(lg w

lg lg w) time, and for all n there exists a w requiring

Ω(
√

lg n
lg lg n) time. In the next lecture, we will discuss the tradeoff between w, n, and space.

2 Lower Bound Results

We only consider the cell-probe model, and the static problem. We require space to be polynomial
in n. Since a static data structure can be constructed through n insertions, this implies the same
lower bound on query for the dynamic problem, which holds even if updates take nO(1) time.

The first superconstant bound, proved by Ajtai [Ajt88], was that for all w, there exists n such that
query time is Ω(

√
lg w). Later, another bound was proved by Miltersen [Mil94], who rephrased

the same proof ideas in terms of communication complexity: for all n, there exists w such that
query time is Ω(3

√
lg n). Subsequently, the proof idea was distilled even further into the technique

of round elimination, which was used to reprove the same bounds in a very concise way [MNSW95].

Beame and Fich [BF99] proved two stronger bounds: for all w, there exists n such that query time
is Ω(lg w/ lg lg w), and for all n, there exists w such that query time is Ω(

√
lg n/ lg lg n). They

also gave a data structure achieving O(min{ lg w
lg lg w ,

√
lg n

lg lg n)}, which shows that these bounds are
optimal if we insist on pure bound in n or w. These same bounds were also proved earlier and
independently by Xiao [Xia92].

Beame and Fich’s proof extends that of Ajtai, and is somewhat complicated. Sen [Sen03] later gave
a stronger version of the round elimination lemma, which gives a cleaner proof of the same bounds.
In this lecture, we will see how to use round elimination to prove the predecessor lower bound, and
we will sketch a proof of the round elimination lemma.

The results we have discussed are actually for an easier problem: colored predecessor. Each element
is colored red or blue; a query on an element x returns the color of x’s predecessor. Because we
can solve colored predecessor using predecessor, a lower bound for colored predecessor will yield a
lower bound for predecessor. Having a lower bound for the simpler problem is useful in reductions
to other problems.

1

3 Communication Complexity

We consider the problem in the communication complexity model. Let Alice represent the query
algorithm and Bob represent memory. Alice has an input x, the query, and Bob has an input y,
the contents of the data structure. Alice and Bob are only permitted to communicate by sending
messages to each other of size at most a and b respectively; we will assume a = O(lg n), so it is
possible to address the entire data structure (using our polynomial space assumption), and b = w,
so a word of memory is returned. The goal is to compute some function f(x, y). In our case,
the function is the color of the predecessor. The parameter of interest is the number of messages
exchanged between Alice and Bob. This is at most twice the number of probes needed in the
cell-probe model. Note, however, that the communication model is much stronger, since it allows
both parties to perform arbitrary computation (the memory can “think”).

3.1 The Predecessor Lower Bound

We will prove an Ω(min{lga w, lgb n}) lower bound on the number of messages needed in the com-
munication game. From this, we can derive the Beame and Fich bounds. We have a = Θ(lg n),
i.e. the memory used is nO(1). Also, b = w. The lower bound is worst (smallest) when

lga w = lgb n ⇒ lg w

lg lg n
=

lg n

lg w
⇒ lg2 w = lg n lg lg n

In terms of n, we find lg w =
√

lg n lg lg n, so the bound becomes lga w =
√

lg n
lg lg n . In terms of w,

we find lg lg w = Θ(lg lg n), so the bound is lgb n = lg w
lg lg w .

4 Round Elimination

Round elimination can be applied to an abstract communication game (not neccessarily related to
the predecessor problem). It gives some conditions under which the first round of communication
can be eliminated. To do this, we consider the “k-fold” of an arbitrary function f :

Definition 1. Let f (k) be a variation on f , in which Alice has the k inputs x1, . . . , xk, and Bob
has inputs: y, i ∈ 1, . . . k, and x1, . . . , xi−1 (note that this overlaps with Alice’s inputs). The goal
is to compute f(xi, y).

Now assume Alice must send the first message. Observe that she must send this message even
though she doesn’t know i yet. Intuitively, if a � k, with high probability she is unlikely to send
anything useful about xi, which is the only part of her input that matters. Thus, we can treat the
communication protocol as starting from the second message, eliminating the first.

Lemma 2 (round elimination lemma). Assume there is a protocol for f (k) where Alice speaks first
that uses t messages and has error probability δ. Then there is a protocol for f where Bob speaks
first that uses t− 1 messages and has error probability δ + O(

√
a/k).

One can give a good intuition for the result of this lemma. If i is chosen uniformly at random
(which is the worst case), in Alice’s first message the expected number of bits “about xi” is a

k .

2

Bob can guess these bits at random; the probability of guessing all bits correctly is 2−a/k, so the
probability of failure is 1− 2−a/k. The protocol has an error rate equal to either the original rate
of δ, or when Bob guesses these bits incorrectly. Because we are interested in small a

k , we have
1 − 2−a/k ≈ a/k. Thus, by eliminating Alice’s message, the error probability should increase by
about a

k . In reality, this intuition is not entirely correct, and we can only bound the increase in the
error by

√
a/k, which is often acceptable depending on the application.

When proving a lower bound, the usual strategy is to use round elimination repeatedly. We
first eliminate Alice’s first message. Then, we interchange Alice and Bob in the lemma, and we
eliminate Bob’s first message. We continue doing this, until we are left with no messages. If at this
point we have a protocol with probability of correctness bounded away from 1

2 , we usually have
a contradiction. This is because nontrivial functions of both intputs cannot be computed without
any communication, so the best possible error probability is 1

2 (random guessing). Also, each time
we eliminate a message, we are changing the problem (we had a protocol for f (k), and we obtain
a protocol for f). This means that inputs are getting smaller, which in turn limits the number of
times we can eliminate a round.

5 Proof of Predecessor Bound

Let t be the number of cell probes (equivalently, the number of rounds of communication) made
by the predecessor algorithm. Our goal is to perform t round eliminations, eliminating all the
messages. As we perform more eliminations, we are reducing n and w to some n′ and w′. We want
to increase the probability of error by at most 1

3t each time, so that at the end, we still have a
nontrivial success probability (at least 2

3). If, say, half the elements are red and half are blue, the
color of the predecessor cannot be decided with probability better that 1

2 (random guessing) given
no communication at all. So we reach a contradiction. Our lower bound is the number of times we
can do the round elimination.

5.1 Eliminating Alice-to-Bob

Alice’s input has w′ bits (initially, w′ = w). Divide it into k equal-size chunks x1, . . . , xk, where
k = Θ(at2). Each chunk is an integer of w′/k bits.

We can construct a tree with branching factor 2w′/k on the w′-bit strings corresponding to the
Alice’s possible inputs, which are the elements of the data structure. The tree then has height
k. This technique is reminiscent of van Emde Boas, in which we divided the query word into two
parts, and in O(1) steps decided that only one what interesting. For the lower bound, we need to
divide into more parts, but the idea is the same.

Because we are proving a lower bound, we are free to choose the inputs to make the problem hard.
Make the elements in the data structure have a shared prefix of length i with Alice’s query and all
differ in the i-th chunk. Thus, all elements branch off from the query in the same chunk (the hardest
case for van Emde Boas). Alice and Bob know the structure of the inputs, so Bob only needs to
know i, the value of the i-th chunk, and x1, . . . , xi (because all of Bob’s values must start with this
common prefix). Thus, when Alice’s message is eliminated, w′ is reduced to w′/k = Θ(w′/at2).
Using the lemma, the error probability increases by O(1/t), which is exactly what we can afford

3

per elimination.

5.2 Eliminating Bob-to-Alice

Now that Alice’s message is eliminated, Bob is speaking first, so he doesn’t know the query’s value.
Bob’s input is n′ integers each of size w′ bits. Divide the set into k equal chunks of n′/k integers
each, where k = Θ(bt2). Remember that fusion trees could recurse in a set of size n/w1/5 after
O(1) cell probes. Here, we are proving that after one probe, you can only recurse into a set of size
n/wO(1), which gives the same bound (because the branching factor is in the logarithm).

Again, we can construct a hard instance. We prefix the integers in each chunk by a value of lg k bits,
giving a unique indentifier of each chunk (the i-th chunk starts with a prefix of i). Alice’s query
starts with some random lg k bits, which decides which chunk is interesting. If Bob speaks first, he
cannot know which chunk is interesting, so using the lemma, we can eliminate Bob’s message the
error probability rises by O(1/t).

The elimination reduces n′ to n′/k = Θ(n′/bt2) and w′ to w′ − lg k = w′ −Θ(lg bt2). At long as w′

does not get too small, w = Ω(lg(bt2)), this last term is negligible (say, it reduces w′ by a factor of
at most 2).

5.3 Stopping

Thus, each round elimination reduces n′ to Θ(n′/bt2) and w′ to Θ(w′/at2). Further, the probability
of error at the end can be made to be at most 1

3 by choosing appropriate constants.

We stop the elimination when w′ = O(lg(bt2)) or n′ = 2. If these stop conditions are met, we have
proven our lower bound: there were many rounds initially, so we could do enough eliminations to
reduce n and w to these small values. Otherwise, we have a protocol which gives an answer with
zero messages, and the error probability is at most 1

3 , which is impossible. So we must be in the
first case (the stop conditions are met).

Hence, we established a lower bound t = Ω(min{lgat2 w, lgbt2 n}). However, because t = O(lg n), a ≥
lg n and t = O(lg w), b = w, the bases of the logarithms are between a and a3 and between b and
b3 respectively. Thus, we found t = Ω(min{lga w, lgb n}).

6 Sketch of the Proof for the Round Elimination Lemma

6.1 Some Information Theory Basics

Definition 3. H(x), called the entropy of x, is the number of bits needed on average to represent
a sample from a distribution of the random variable x. Formally,

H(x) =
∑
x0

Pr[x = x0] · lg
1

Pr[x = x0]

Definition 4. H(x | y) is the conditional entropy of x given y: the entropy of x, if y is known:

H(x | y) = Ey0 [H(x|y = y0)]

4

Definition 5. I(x : y) is the mutual or shared information between x and y:

I(x : y) = H(x) + H(y)−H((x, y)) = H(x)−H(x | y)

I(x : y | z) is defined in a manner similar to that of H(x | y).

6.2 The Round Elimination Lemma

Call Alice’s first message m = m(x1, . . . , xk). Next, we use a neat theorem from information theory
to rewrite entropy as a sum:

a = |m| ≥ H(m) =
k∑

i=1

I(xi : m | x1, . . . , xi−1)

If i is distributed uniformly in {1, . . . , k}, then Ei[I(x : m | x1, . . . , xk)] = H(m)
k ≤ a

k . This is why a
k

was an estimate for how many bits of information Bob could learn from the message about Alice’s
message. Note that we bounded I(xi : m | x1, . . . , xi−1), so even if Bob already knows x1, . . . , xi−1

and receives m, he still learns at most a
k bits about xi.

The prove the lemma, we must build a protocol for f given the assumed protocol for f (k). We can
build a protocol f(x, y) as follows:

1. Fix x1, . . . , xi−1 and i a priori (known to both players) at random.

2. Alice pretends xi = x.

3. Run the f (k) protocol, starting at the second message, by assuming the first message is
m = m(x1, . . . , xi−1, x̃i, . . . , x̃k), where x̃j is a random variable drawn from the distribution
of xj . Now the first message does not depend on xi = x (even xi is chosen randomly), so Bob
can generate it by himself, without any initial message from Alice.

4. Now Alice has some actual x, which she must use as xi, and almost certainly x̃i 6= x. But
we know that I(xi : m) is very small, so the message doesn’t really depend on xi in a crucial
way. This means that a random message was probably good: Alice can now fix xi+1, . . . , xk,
so that m(x1, . . . , xi−1, x̃i, . . . , x̃k) = m(x1, . . . , xi−1, x, . . . , xk), for the desired xi = x.

The last step is the crucial one which also introduces an error probability of O(
√

a/k). This
can be proved based on the “Average Encoding Theorem” from information theory. There also
exists a more subtle problem that this theorem solves: not only must xi+1, . . . , xk exist, so that a
Bob’s random guess for a message is made valid, but their distributions are close the the original
distributions, so the error probability δ does not increase too much.

References

[Ajt88] M. Ajtai: A lower bound for finding predecessors in Yao’s cell probe model, Combinatorica
8(3): 235-247, 1988.

5

[BF99] P. Beame, F. Fich: Optimal Bounds for the Predecessor Problem, Symposium on the Theory
of Computing 1999: 295-304.

[Mil94] P. Miltersen: Lower bounds for union-split-find related problems on random access ma-
chines, Symposium on the Theory of Computing 1994: 625-634.

[MNSW95] P. Miltersen, N. Nisan, S. Safra, A. Wigderson: On data structures and asymmetric
communication complexity, Symposium on the Theory of Computing 1995: 103-111.

[Sen03] P. Sen: Lower bounds for predecessor searching in the cell probe model, IEEE Conference
on Computational Complexity 2003, 73-83.

[Xia92] B. Xiao: New bounds in cell probe model, PhD thesis, University of California, San Diego,
1992.

6

